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1 Introduction 

One of the major problems in the area of restructuring compilers is that of optimizing sparse 

code. Preferably we wish to be able to automatically select a sparse structure that is best suited 

to the input matrices. The MT1 compiler, developed at Leiden University [1; 2], is a compiler that 

can take dense code and automatically generate sparse code suited to the non-zero structure of 

the sparse matrices used in the code. 

In order to be able to transform it, the code used as input to such a compiler may usually not 

use indirections, and such is the case with MT1. The compiler needs to do deep data dependency 

and zero-structure analysis of the data structures used in the code, and if these structures are 

accessed irregularly it is often not possible to draw any meaningful conclusions from this 

analysis, thus prohibiting the transformation of the code. This presents a problem when the code 

one wishes to optimize is already using a sparse representation, since this code will use 

indirection. 

While there exist approaches to automatically restructure irregular code into regular (dense) 

code [3], these are meant for languages such as FORTRAN, where indirect addressing is done by 

using index arrays; for example a certain array might be accessed directly using A(n) or 

indirectly using A(B(n)). Here B serves as an index into A, and the access pattern of A is 

governed by B. The irregular code transformation presented in [3] is applicable only to these 

types of irregular code. 

In languages such as C, irregularity is typically created by the use of pointers. For this and 

other reasons, optimizing C code is incredibly complex. Pointers do not only allow irregular 

access, but they can point to arbitrary locations, multiple pointers can point to the same location 

(aliasing), they can be arbitrarily manipulated, and they allow more complicated structures such 

as a linked list or tree, all of which present considerable challenges. Some of the challenges 

involved in optimizing C code are outlined in chapter 12 of [4]. 

One very common pointer structure is the linked list. The linked list provides significant 

optimization challenges even outside the realm of sparse matrix computation. Linked lists 

represent a sequence of elements where each element is in a completely unrelated location, 

making it difficult for the compiler to optimize the memory access patterns and the CPU cache 

cannot use locality to speed up access to the list. It is also impossible to vectorize computations 

that involve them. Additionally, the presence of the linked list in a loop, which means the use of 

pointers, will often prevent simple automatic transformations such as loop interchange which 

can help to optimize the code. 

In this thesis, we have devised a method whereby a linked list, created using pointers and 

used to represent sparse data, can be automatically transformed into code operating on dense 

data structures. The linked list will have been replaced by a regularly accessed array, allowing 

further optimization. 

To evaluate the possibilities of further optimization and sparse data structure selection, we 

will use the sparse compiler MT1 to transform the generated dense code into sparse code 

optimized for a certain matrix structure. Because MT1 can only operate on FORTRAN code, and 

not on C code, we automatically transform our C code into FORTRAN. This transformation 

imposes some requirements on the used C code so it is not generally applicable, but it suffices 

for the code we need to transform here. The performance of the different versions will then be 

measured and compared. 

The techniques presented here are generic; they can be applied to any C code using linked 

lists as long as it meets the requirements stated later. Even when the linked list was not used to 
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represent sparse matrices the transformation can yield some benefits by enabling optimizations 

such as vectorization on the generated code. 

The approach used here is quite unique. For the past few decades, the major focus of pointer 

optimization research has been in the area of dependence analysis in the presence of pointers, 

something which will be covered further in Section 3.5.1. Although around a hundred papers 

and theses have been written on pointer analysis, surprisingly little research exists on the 

application of these techniques. What little work does exist tends to focus on more conventional 

optimization techniques such as common sub-expression elimination, loop-invariant 

elimination, etc. [5], on parallelization [6; 7] or on optimizing memory access and allocation [8]. 

No research in the area of sparse computations involving pointers or even vectorization of code 

involving pointers (other than pointers to arrays) could be found. 

Instead of focusing on pointer dependence analysis, this thesis focuses on a specific pointer 

usage pattern and attempts to enable more complex optimizations, for example loop interchange 

and data structure transformation, such as those done by sparse compilers, an approach that 

appears to be unprecedented. 

2 Example code: sparse matrix multiplication 

In order to illustrate the techniques used for linked list transformation, we will use an 

example of a sparse matrix computation. In this example, the sparse matrix is represented using 

a linked list. The data structure for a sparse matrix consists of two linked lists of column and row 

headers. Each header item contains a linked list for the column or row respectively. The type 

definitions used by this representation are given below. 

struct Cell  

{ 

 float Value; 

 int ColIndex; 

 int RowIndex; 

 struct Cell *RowNext; // Cell in the next row 

 struct Cell *ColNext; // Cell in the next column 

}; 

 

struct RowHead 

{ 

 int RowIndex; 

 struct Cell *Cell; 

 struct RowHead *Next; 

}; 

 

struct ColHead 

{ 

 int ColIndex; 

 struct Cell *Cell; 

 struct ColHead *Next; 

}; 

 

struct Matrix 

{ 

 int Dimensions; 

 struct ColHead *Col; 

 struct RowHead *Row; 

}; 
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As you can see the row and column linked lists both use the same type to represent the cells. 

Indeed, every instance of the Cell structure will be part of the linked list for both its row and its 

column. 

To allow sparseness, cells which have a zero value will be omitted from the linked lists. This 

means the RowIndex and ColIndex can skip values if a Cell has been omitted. Similarly, if a row 

or column consists entirely of zeros, the header may be omitted as well. This representation can 

be easily constructed reading the matrix from a file that uses either a dense or sparse notation. 

Figure 1 shows an example of how a 3x3 sparse matrix would be represented in this format. 

 
 

 

For demonstration purposes, we use the following matrix multiplication algorithm which 

uses this representation for one of the matrices involved; the others use a traditional multi-

dimensional array representation that is fully dense, i.e. all values are stored, even zeroes: 

int MatrixMultiply(Matrix left, float** right, int rightDimensions,  

                   float **result, int resultDimensions) 

{ 

  struct RowHead *leftRow = left.Row; 

  struct Cell *leftCell; 

  int dimensions = left.Dimensions; 

  int col; 

  int row; 

  int x; 

 

  if( !(left.Dimensions == rightDimensions &&  

        left.Dimensions == resultDimensions) ) 

    return -1; 

 

  for( col = 0; col < dimensions; ++col ) 

  { 

    leftRow = left.Row; 

 

    for( row = 0; row < dimensions; ++row ) 

    { 

      if( leftRow != NULL && leftRow->RowIndex < row ) 

        leftRow = leftRow->Next; 
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Figure 1 A sparse matrix using linked list representation. 
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      if( leftRow != NULL && leftRow->RowIndex == row ) 

      { 

        leftCell = leftRow->Cell; 

        for( x = 0; x < dimensions; ++x ) 

        { 

          if( leftCell != NULL && leftCell->ColIndex < x ) 

            leftCell = leftCell->ColNext; 

 

          if( leftCell != NULL &&  

              leftCell->ColIndex == x && 

              leftCell->RowIndex == row ) 

          { 

            result[row][col] += leftCell->Value * right[x][col]; 

          } 

        } 

      } 

    } 

  } 

 

  return 0; 

} 

There are a few things to note about this algorithm. The result and right matrices both use an 

“array-of-arrays” representation instead of a typical multi-dimensional array as used in C, which 

would be strided. This is to allow for dynamic allocation of the arrays. Because these are 

pointers, they present all the problems listed in [4]. For the purposes of our transformation, we 

must assume that these pointers point to distinct arrays. If they were to overlap, reads of “right” 

are dependent on writes of “result”, which breaks data dependence analysis. This is one the 

aliasing problems which is mentioned in section 3.5.1 and it cannot be completely solved here. 

Transformation directives will be used to indicate which sections of the code do not violate such 

restrictions and are therefore safe to transform. 

Another thing to note is that since the left matrix is walked in row order only, the ColHead 

linked list is not used. This does not matter to the algorithm, and indeed if it were used (as 

would be the case if right was sparse as well) the linked list transformation would be executed in 

exactly the same way. 

Finally, you should note that the loop used to walk the linked list is not typical for linked list 

code. Usually you see linked list loops that use a condition such as while( node != NULL ). This 

matrix multiplication code uses what we call a semi-dense loop; this is elaborated on in Section 

3.3. It is indeed possible to write matrix multiplication using the more common type of linked 

list code, and it would in fact be a great deal faster for matrices with low density. The choice of 

initial code however does not affect the algorithm; this version however is chosen in particular 

because it demonstrates more aspects of the transformation. Appendix B shows the alternative 

version of the algorithm along with results of transforming it. 

3 Linked list transformation 

In this section, we will cover the method used for linked list transformation. We will provide 

a set of automatic transformations that a compiler could execute to transform irregular sparse 

code, which uses linked list pointers, into regular dense code. The transformation will attempt to 

move all linked list style pointer accesses from the main loop being transformed into separate 

initialization loops, removing the linked list from the main loop leaving a linearly accessed array 

in its place in the main loop. 
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Currently, no real implementation of the system exists. It is however described using steps 

which can be performed automatically and is also presented in a pseudo code implementation. 

Although the transformed code examples were done by hand, all could be done automatically. It 

should be noted that the examples are not fully normalized as described in section 3.5; 

normalization is necessary for automatic processing, but some of it has been omitted in favor of 

keeping the examples readable. 

3.1 Sublimation vs. Annihilation 

The goal of the transformation is, in essence, to regularize the linked list into an array. There 

are two basic techniques by which we can do this, sublimation and annihilation. 

With sublimation, we transform a sparse linked list into a dense array by filling in all the 

omitted values with a suitable fill-in value, e.g. zero or one; which value exactly will depend on 

the source data (for details on how the value to use is determined, see section 3.4.5). 

With annihilation, the linked list is still transformed into an array, but leaving it sparse. The 

only values in the array will be the values that were in the linked list; values that were omitted in 

the linked list will still be omitted in the array, so no fill-in value is needed. If the code being 

transformed uses any other data structures apart from the linked list, such as a dense array, it 

may be necessary to transform those as well so that they match the transformed array. 

Let us illustrate this with an example. Assume you have a vector of ten values, which looks 

like this:�1, 1, 3, 1, 1, 7, 2, 1, 9, 1�. In this case, we are only interested in the values that have a 

value other than one, so only four values are relevant. These are stored in a sparse linked list, 

which omits the values that are one; this means the linked list will contain four nodes. Besides 

the value, each node also contains a member which indicates the original index that value had in 

the vector. The (zero-based) indices of the relevant values are 2, 5, 6 and 8. 

 

 
 

 

Figure 2 shows the structure of this linked list. We now look at a simple reduce algorithm that 

operates on this linked list: 

int product = 1; 

/***DENSE_INDEX(node, node->Index)***/ 

/***DENSE_DIMENSION(node, 10)***/ 

while( node != NULL )  

{ 

  product *= node->Value; 

  node = node->Next; 

} 

Besides the simple algorithm, this code snippet also contains two transformation directives, 

one which tells it how to determine the dense index for a node  in the linked list, and one that 

tells it the original dense size of the vector (note that this does not need to be a constant, any 

expression will do). Directives influencing the translation are covered in more detail in section 

3.6. 

When translating the linked list using sublimation, the goal is to create an array that contains 

ten elements, i.e. all of the original elements in a dense representation. An initialization loop is 

Value: 3 

Index: 2 

Value: 7 

Index: 5 

Value: 2 

Index: 6 

Value: 9 

Index: 8 
NULL 

Figure 2 A simple linked list representing a sparse array 
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generated to copy the linked list contents into such an array, and the main loop is transformed to 

use the dense array instead of the linked list. The fill-in value we will use is one, since that was 

the omitted value, and it can be shown that using that value will not cause the semantics of the 

algorithm to change, since multiplying by one does nothing (since this thesis deals mainly with 

sparse matrices, the fill-in value will nearly always be zero; this example was designed 

specifically to show that it does not need to be; the techniques presented can deal with any fill-in 

value). 

int product = 1; 

int x; 

// Initialisation 

int *nodeArray = malloc(10 * sizeof(int)); 

for( x = 0; x < 10; ++x ) 

{ 

  if( node != NULL && node->index == x ) 

  { 

    nodeArray[x] = node->Value; 

    node = node->Next; 

  } 

  else 

    nodeArray[x] = 1; // Fill-in value 

} 

// Main loop, transformed 

for( x = 0; x < 10; ++x ) 

{ 

  product *= nodeArray[x]; 

} 

free(nodeArray); 

As you can see, new loop bounds have been determined using the dimensions of the dense 

array which were specified with the transformation directive. Both the initialization loop and 

the transformed main loop use this loop bound. The initialization loop uses a check against the 

dense index to see whether it should copy the value from the linked list or use the fill-in value 

(note that this is not the only way the initialization loop can be created in this case, more on that 

in section 3.4.6). The transformed main loop loops over the entire dense array, and uses the 

values from the array instead of the linked list. The linked list is not present in the main loop at 

all anymore. 

After the initialization loop, nodeArray looks exactly like the original vector: �1, 1, 3, 1, 1, 7, 2, 1, 9, 1� 
As you can see, it has ten elements, like the original dense data, and contains the used values 

at their proper indices. All the other values are one, the fill-in value. 

Now let us see what this code would look like transformed using annihilation instead. Here 

the goal is to create an array that contains only the dense values. No fill-in value is needed 

because nothing is filled in. 

int product = 1; 

int x; 

// Initialisation 

int *nodeArray = malloc(10 * sizeof(int)); 

int nodeDimensions = 0; 

while( node != NULL ) 

{ 

  nodeArray[nodeDimensions] = node->Value; 

  ++nodeDimensions; 

  node = node->Next; 
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} 

// Main loop, transformed 

for( x = 0; x < nodeDimensions; ++x ) 

{ 

  product *= nodeArray[x]; 

} 

free(nodeArray); 

Because the actual number of elements in the linked list cannot be known until runtime, the 

system takes the safe approach and still allocates an array of ten elements, which it knows is the 

maximum possible number (alternatively, you could dynamically grow the array but this is not 

done here for the sake of simplicity). The actual number of elements is determined as the linked 

list is being traversed in the initialization loop. The main loop, other than using a different upper 

bound, is the same as for sublimation (note that this is not always the case; in certain 

circumstances, annihilation can cause additional transformations to take place). 

The actual location of the relevant values is not important here; the dense index expression is 

not used anywhere. If it is used, there are still ways to deal with that; these are covered in 

Section 3.4.5. 

After initialization, nodeArray contains the following data: �3,7,2,9� 
The array is actually more than four elements long, but the rest of its contents are irrelevant 

as they are never read. 

In the following sections, whenever there is a difference in the approach taken for 

sublimation or annihilation, this will be explicitly mentioned. 

3.2 Pre- and post-initialization 

In the example above, the only additional work that needed to be done came before the 

transformed main loop. The only thing done after the loop is freeing the memory associated with 

the array, which is not relevant here; it is simply clean-up code, and its omission would not 

change the semantics of the program (but it would introduce a memory leak). 

Whenever the transformation needs to generate code that uses one of the data structures 

from the main loop, and this code is executed before the main loop, it is called pre-

initialization.  There are situations when such code needs to be executed after the main loop. 

This is called post-initialization. 

A common case where this would be necessary is when the contents of the linked list are not 

read, but written to. Let us look at an example of a simple algorithm, using the same linked list 

structure as in the previous section, where each of the elements is assigned a value from some 

other source (in this case a constant is used for simplicity, but normally this would be the result 

of some computation; commonly this would involve a read of the same member). 

/***DENSE_INDEX(node, node->Index)***/ 

/***DENSE_DIMENSION(node, 10)***/ 

while( node != NULL ) 

{ 

  node->Value = 42; 

  node = node->Next; 

} 

For sublimation, we have an additional problem to solve: we need to know which indices of 

the dense array to assign to. As we will see in later sections, it does not matter what value is 

assigned to the unused indices, since these will never be read. You can see that in the code below 

the post-initialization loop will only read the original dense indices. If the statement that 
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determines the value is expensive, it may be desirable to perform it only for valid indices.  In this 

example that is not the case; it is after all only a constant. Therefore, we simply execute the 

statement every iteration. 

// Pre-initialisation 

int *nodeArray = malloc(10 * sizeof(int)); 

int x = 0; 

// Main loop, transformed 

for( x = 0; x < 10; ++x ) 

{ 

  nodeArray[x] = 42; 

} 

// Post-initialisation 

while( node != NULL ) 

{ 

  node->Value = nodeArray[node->Index]; 

  node = node->Next; 

} 

free(nodeArray); 

For annihilation, we will need a pre-initialization loop to find out the proper upper bound to 

use. We will also need to keep a counter to know what index to use for indexing the nodeArray. 

Below is the same code, transformed with annihilation. 

// Pre-initialisation 

int *nodeArray = malloc(10 * sizeof(int)); 

int nodeDimensions = 0; 

int x = 0; 

Node *nodeCopy = node; 

while( nodeCopy != NULL ) 

{ 

  ++nodeDimensions; 

  nodeCopy = nodeCopy->Next; 

} 

// Main loop, transformed 

for( x = 0; x < nodeDimensions; ++x ) 

{ 

  nodeArray[x] = 42; 

} 

// Post-initialisation 

nodeCopy = node; 

x = 0; 

while( nodeCopy != NULL ) 

{ 

  nodeCopy->Value = nodeArray[x]; 

  nodeCopy = nodeCopy->Next; 

  ++x; 

} 

free(nodeArray); 

It will often be the case that the linked list value is both read and written. In this case, pre-

initialization for the read access is generated first. The post-initialization will then be able to use 

the same array as the pre-initialization code. For example: 

/***DENSE_INDEX(node, node->Index)***/ 

/***DENSE_DIMENSION(node, 10)***/ 

while( node != NULL ) 

{ 

  node->Value = node->Value * 2; 
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  node = node->Next; 

} 

Using sublimation, this will be transformed to the following, with fill-in value zero: 

// Pre-initialisation 

int *nodeArray = malloc(10 * sizeof(int)); 

int x; 

Node *nodeCopy = node; 

memset(nodeArray, 0, 10 * sizeof(int)); 

while( nodeCopy != NULL ) 

{ 

  nodeArray[nodeCopy->Index] = nodeCopy->Value; 

  nodeCopy = nodeCopy->Next; 

} 

// Main loop, transformed 

for( x = 0; x < 10; ++x ) 

{ 

  nodeArray[x] = nodeArray[x] * 2; 

} 

// Post-initialisation 

nodeCopy = node; 

while( nodeCopy != NULL ) 

{ 

  nodeCopy->Value = nodeArray[nodeCopy->Index]; 

  nodeCopy = nodeCopy->Next; 

} 

Transformation of this code with annihilation is analogous to this so the result of this is not 

given. 

Note that because there is more than one initialization loop, which all depend on the initial 

value of node, a copy of node is made and used instead. 

This example also shows something else. Because the fill-in value is zero, there is a more 

efficient way to set it (using the memset function, which on most architectures is much faster 

than setting the values manually in a loop), which allows us to use the original loop construct for 

the pre-initialization loop, potentially drastically reducing the number of iterations needed. 

3.3 Two types of loops 

As indicated earlier the loops in the matrix multiplication sample are different from typical 

linked list loops such as the loops in the examples in the previous two sections. 

Recall this example: 

int product = 1; 

/***DENSE_INDEX(node, node->Index)***/ 

/***DENSE_DIMENSION(node, 10)***/ 

while( node != NULL )  

{ 

  product *= node->Value; 

  node = node->Next; 

} 

The transformation is told, via the DENSE_DIMENSION directive, that the dense data 

structure represented here had ten values. Since the linked list is sparse, it likely has less than 

ten nodes (only four in the example list), since certain values were omitted. This also means that 

the loop will iterate fewer than ten times. In other words, the loop body will be executed fewer 

times than there are values in the original structure. 
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Now consider the same example, but written in an alternative way. 

int product = 1; 

int x; 

/***DENSE_DIMENSION(node, 10)***/ 

for( x = 0; x < 10; ++x ) 

{ 

  if( node != NULL && node->Index < x ) 

    node = node->Next; 

  if( node != NULL && node->Index == x ) 

    product *= node->Value; 

} 

This code has the same effect as the earlier sample1, but it has a form that is very similar to 

the loops in the matrix multiplication example. In particular, despite the fact that the linked list 

contains less than ten members, the loop body will execute exactly ten times. A guard is used to 

ensure action is taken only when the linked list element is valid for the current iteration. So the 

loop body will be executed exactly as many times as there are values in the original structure. 

A loop which iterates only over the elements over the sparse list, as in the first case, is called a 

sparse loop. A loop which executes as many times as the dimensions of the original data, 

regardless of the number of elements in the sparse list, is called a semi-dense loop. 

The treatment of the two types of loops is mostly the same, but there are some slight 

differences. You can immediately observe that when performing sublimation on a sparse loop, 

the transformed loop will have more iterations than the original, but for a semi-dense loop the 

number of iterations will remain the same. Conversely, when performing annihilation the 

number of iterations stays the same for a sparse loop, whereas it decreases for a semi-dense 

loop. It is mainly this difference in the annihilation process where it is necessary to make the 

distinction between sparse and semi-dense loops. 

Another difference is the determination of the dense index. The dense index is an important 

piece of information for the transformation; it is the index that a value in the sparse linked list 

had in the original dense representation in the data. For a sparse loop, the dense index is not 

implicitly retrievable from the code, so it must be specified in some way. As we have already 

seen, the DENSE_INDEX transformation directive is used to indicate what expression to use to 

determine the dense index. In a semi-dense loop, the dense index is implicit in the progress of 

the loop, so the loop counter can be used. The DENSE_INDEX directive is not necessary in this 

case. 

The transformation method will treat a loop as semi-dense whenever the DENSE_INDEX 

directive is not present for that loop or the expression it specifies is independent of the linked 

list expression. Otherwise is will treat it as a sparse loop. 

3.4 Linked list transformation algorithm 

We will now present the algorithm used to transform a linked list into a dense array. The 

linked list transformation consists of the following steps, which will be discussed separately: 

                                                             
1 The fact that the two examples are semantically identical can be shown as follows: because Index is a 

proper dense index member, for any nodes x and y where y succeeds x in the list, x->Index < y->Index. 

This means that the expression node->Index < x will evaluate true in the iteration immediately following 

one where node->Index == x was true. Then after evaluating node = node->Next, node->Index must be 

equal to or higher than x. This means that all nodes in the linked list are visited, and that for each of them 

the condition node->Index == x will be true exactly once, leading to the same sequence of multiplications 

as in the original sample. 
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1. Find candidate structures that could be part of a linked list 

2. Analyze usage of these structures in the code to look for linked list access patterns. 

3. Determine whether the loop containing linked-list access can be safely transformed. 

4. Identify data members in the linked list structure. 

5. Generate appropriate replacement dense data structures. 

6. Replace linked list accesses with dense structure accesses, and generate the appropriate 

initialization. 

7. Attempt to move the initialization loops so that they are not in any outer loops 

As indicated in the introduction, pointer access types vary wildly, so the transformation must 

be capable of determining which pointers are actually linked lists. Step one and two deal with a 

heuristic approach of finding pointer usage patterns that indicate a linked list. In step three and 

four, the identified code sections are validated to see if they are safe to transform. Step five and 

six generate the initialization code and replace the original code with the transformed code, and 

step seven tries to move the initialization loops out of the way as much as possible. 

Before these steps can be executed, as we will see, it is necessary for certain features in the 

code to be normalized so that they can be processed. This is described in section 3.5. 

In the following sections, we will look at each of these steps in more detail. 

3.4.1 Finding linked list structure candidates 

To begin the process of linked list transformation, user defined types that can be used as a 

node in a linked list must be identified. All structure definitions in the source file will be 

examined. A structure X can potentially be part of a linked list when it contains a member that is 

a pointer to the type X, because this member could be used as a next pointer. A linked list 

candidate is a pair of values, one being the name of the structure that meets these 

requirements, and the other being the name of the potential “next” member. 

For instance, it will look at the following structure from the matrix multiplication example: 

struct Cell { 

 int Value; 

 int ColIndex; 

 int RowIndex; 

 struct Cell *RowNext; 

 struct Cell *ColNext; 

}; 

This structure contains two members that are a pointer to the defining structure type, namely 

RowNext and ColNext. This means that this structure has not one, but two members that would 

allow it to be a linked list. Therefore two linked list candidates will be generated from this 

structure; one for RowNext, and one for ColNext. Note that it is not necessary to look at the 

names of the members; although the use of the word “next” is a definite hint, the next step makes 

it unnecessary, as it is the usage pattern of the structure that determines whether it is actually a 

linked list. By not paying any attention to identifier strings, we can transform code that uses, say, 

Chinese identifiers just as easily as English. 

Often a structure containing two members of the defining type is actually part of a binary tree 

and not of a list. Indeed, any linked list candidate found by this step might not actually be a 

linked list. The next step will be able to determine whether this is actually a linked list. The nice 

thing about this approach is that even if this structure were part of a binary tree, if there is any 

place in the code where some loop iterates over for instance the left-most branch of this tree, in 

a fashion that looks like a linked list even though it is really not, it would still be possible to 

perform the transformation. 
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In the matrix multiplication example, the following linked list candidates would be found: 

Cell::RowNext, Cell::ColNext, RowHead::Next, and ColHead::Next. 

Below is the algorithm for step one in pseudo-code. 

function FindCandidateStructs(translationUnit) 

  candidateList = {} 

  foreach structDefinition in translationUnit 

    foreach member in structDefinition 

      if GetType(member) = pointer to GetType(structDefinition) 

        candidate = [ struct-definition, member ] 

        Add(candidateList, canditate) 

      endif 

    next 

  next 

  return candidateList 

3.4.2 Analyzing candidate structure usage 

Once the linked list candidates are identified, we will proceed to look for locations in the code 

where these structures are used, and will try to determine if this usage is eligible for 

transformation. It can do this on a case-by-case basis; each loop or nested loop in the code that 

uses a linked list candidate can be evaluated separately from any other usages, and even if there 

are usages that cannot be transformed, that does not mean that other usages of the same 

candidate in other places of the code cannot be transformed. 

Each linked list candidate found in step one, consisting of a candidate structure and member, 

is examined to look for loops in the code that have a statement that takes a variable, whose type 

is a pointer to the candidate structure, and assigns it the value of the candidate member of that 

same variable, e.g. it looks for statements of the form variable = variable-

>candidate_member. This is called the linked list iteration statement. Looking at the 

MatrixMultiply function presented earlier, it can be seen that two of the candidates have a valid 

usage: leftRow = leftRow->Next is an iteration statement for RowHead::Next, while leftCell = 

leftCell->ColNext is one for Cell::ColNext. This tells us that the loops containing these 

statements might be a candidate for transformation. The loops that contain these statements will 

be marked as candidate linked list traversals. Note that only the directly containing loops are 

candidates; so in the case of the Cell::ColNext candidate only the innermost loop is a candidate 

traversal, not the middle and outer loops. Similarly, the candidate traversal for RowHead::Next is 

the middle loop, not the outer loop. 

It is this step that is the most important part of the heuristic used to find linked lists. As noted 

above, looking for this pattern makes it unnecessary to consider the naming of the pointer 

members, and the fact that only ColNext is used for rightCell means that this is not a tree 

(actually, it might still be a tree, but as noted above this does not matter as long as this particular 

usage looks like a linked list). 

If a loop is a candidate traversal for more than one linked list candidate, each must be 

evaluated separately. The presence of other variables used in the loop is not an obstruction, 

provided none of the rules in the next section are violated. 

The C language provides some difficulty here if we wish to be flexible about how the linked 

list is used. So far we have talked about a linked list variable, while in fact it would be more 

desirable to consider this in terms of expressions. After all, if a loop uses someArray[x] = 

someArray[x]->next in a consistent fashion, we would want our algorithm to recognize this as 

well. In this case, someArray is not actually a candidate variable, because it is not of itself the 

correct type. However someArray[x] is an expression whose result type is of the correct type, so 
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we could call this a candidate expression. So the linked list iteration statement would be 

formally identified by an l-value expression which resolves to a pointer to a candidate structure, 

which is assigned a value that is found by taking that same expression, and accessing the 

candidate member for this linked list candidate. 

The difficulty in implementing it so that expressions instead of variables are considered lies 

with the fact that both expressions would need to be equivalent. To this end, a pre-processing 

step that normalizes all expressions so that they can be directly compared is performed. 

Normalization is further covered in section 3.5. 

Step two can be written in pseudo code as follows. 

function FindCandidateTraversals(function, candidateList) 

  loopStack = {} 

  traversalList = {} 

  statements = FlattenStatements(GetBody(function)) 

  foreach statement in statements 

    if IsInsideSafeRegion(statement) 

      if IsLoopStart(statement) 

        # check for init loops generated 

        if IsInitLoop(statement) 

          SkipLoop(statement) 

        else 

          Push(loopStack, statement) 

        endif 

      elseif not Empty(loopStack) and  

             statement like "expression = expression->member" 

        testCandidate = [ GetType(expression), member ] 

        if Contains(candidateList, testCandidate) 

          traversal = [ Peek(loopStack), testCandidate, statement ] 

          # check if this traversal was not already processed 

          if not IsProcessed(traversal) 

            Add(traversalList, traversal) 

          endif 

        endif 

      endif 

      if IsLastLoopStatement(Peek(loopStack), statement) 

        Pop(loopStack) 

      endif 

    endif 

  next 

  return traversalList 

The FlattenStatements function recursively flattens all compound statements in the function 

body into a single list containing all statements, marking the beginning and end of compound 

statements so it remains possible to identify them. IsLoopStart returns true if the statement is a 

“do” or “while” statement (for-loops are not considered because they are transformed into while 

loops during normalization). IsLastLoopStatement returns true if the statement after the given 

statement is outside the loop body of the specified loop. 

The result of this function is a list of sets of a loop, linked list candidate and linked list 

iteration statement identifying the candidate traversals in this function. 

3.4.3 Transformation evaluation 

Before we can continue with transforming the loop, we must evaluate if the candidate 

traversal is safe to transform. Because of the incredible expressive power of C this is not an easy 

task; it is easy to accidentally forget to mention some situation that would prevent a correct 
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transformation. For this reason the conditions are, as much as possible, written so that they 

demand the code fits a certain form that is known to be safe instead of demanding it does not 

have a form that is not safe. 

In the section below, when we refer to the linked list expression, this is the expression whose 

type is a pointer to the candidate structure and which is used in the linked list iteration 

statement. As indicated in the previous section, this can be a simple variable or a more 

complicated expression. 

We must first define what we consider to be a modification of an expression. An expression is 

modified when it, or any sub-expression of it, is used on the left-hand side of an assignment 

expression; when the dereferencing of any sub-expression of the expression is used on the left-

hand side of an assignment; and when a reference to the expression or any sub-expression of it 

is passed to a function. The last case does not necessarily mean the value will be modified, but it 

can be, and without analyzing the function it is impossible to determine if it will; therefore, we 

will assume worst case. Whenever the conditions below mention an expression or variable is 

modified (e.g. a condition like “x may not be modified”) this definition of modification is used. 

The following examples illustrate this. Consider the expression x->y. Here x is a pointer to 

some structure containing a member named y. 

x->y = z; 

The expression is directly assigned to, so it obviously means that the value is modified. 

x = z; 

X is a sub-expression of x->y. The value of x changed, so the next time x->y is evaluated it will 

yield different results. Therefore, we count this is a modification to x->y. 

*x = z; 

Although x itself did not change, the contained value of x (which is the structure it points to) 

is overwritten. Since z probably held a different value y, the value of x->y will have changed by 

this statement. 

func(&x); 

The function receives a pointer to x, so it can potentially modify the value of x; since the 

function is not analyzed, we will assume it does, and count this is a modification of x, and thus of 

x->y. 

x->a = z; 

This does not count as a modification. Although x is dereferenced, the result of this is not 

actually assigned to; it is used as part of an expression that is assigned to, but that does not 

constitute an assignment to x itself. 

*(x->y) = z; 

This does not count as a modification either. The value of x->y itself did not change. 

Now consider the expression x[y]. Here, x is an array. 

x = z; 

As above, this counts as a modification of x[y], since x changed. 

x[y][z] = a; 
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This again does not count as a modification. The value of x[y] itself is only read and then 

used in a further expression. Although the result of that expression is assigned to, the value of 

x[y] itself is not changed. 

An expression is considered to be loop-invariant if it is not modified anywhere inside the 

loop body. If an expression A is modified, but is assigned the value of an expression B that is 

loop-invariant, A is considered loop-invariant as well. 

The root non-invariant expression for an expression A that is not loop-invariant and that is 

assigned the value of expression B is the root non-invariant expression of the non-invariant sub-

expression of B. If the sub-expression of B that is not loop invariant is equal to A, the non-

invariant expression of A is A itself. 

Consider the following example: 

const int N; 

int x = 0, y, z; 

while( x < N ) 

{ 

  x = x + 1; 

  y = x; 

  z = N; 

  function(x, y, z); 

} 

This loop uses three variables: x, y and z. All three are assigned to in the loop body. Variable z 

is modified, but the value it is assigned is a constant. Every time when the value of z is read it has 

the same value, so z is loop-invariant despite of the assignment. The variable x is assigned a 

value that depends on its value from the previous iteration, so x is not loop-invariant. The non-

invariant part of the expression that is assigned to x is x itself, so the root non-invariant 

expression of x is x. The variably y is assigned the value of x, which is not loop-invariant, so y is 

also not loop-invariant. The root non-invariant expression of y is equal to the root non-invariant 

expression of x, which is x. 

Related, but not equal, to this is the notion of side-effects. An expression is said to have side-

effects if it can modify any other expression. An expression that is – or contains – an assignment 

expression (such as x = y) has side-effects because it modifies the left-hand side of that 

assignment. Any expression containing a function call (e.g. x + func()) can also have side-

effects, since the function can modify global or static variables. Because we do not analyze the 

function, we again assume the worst and say that any function call will have side-effects. 

We can now state the conditions that must be met. In order for it to be possible to 

automatically transform a loop iterating over a linked, it must meet the following conditions: 

1. The linked list expression must not have side effects. 

2. Loop termination control must be trivial; if determining whether or not the loop 

should terminate is a large part of the computational cost of the loop, then doing the 

transformation will move – or more likely, multiply – this since it becomes part of the 

initialization loop. To make it easier to reason about this the normalization step will 

transform all loop structures into while loops or do-while loops (see section 3.5.2), 

although this is not done in the examples posed in this thesis. The loop termination 

guard must meet the following conditions: 

o It may not have any side-effects. 

o If the guard uses any variables that are not loop-invariant other than those 

that are part of the linked list expression (these are loop control variables; 

typically this will be a counter or similar), then there may be exactly one 
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modification of these variables and this modification must occur on every loop 

iteration (i.e. it may not be guarded). 

o The loop termination condition must be the only factor controlling 

termination of the loop; therefore the use of goto and break statements is 

prohibited. 

Typically, a linked list iteration loop will use a condition similar to while( 

candidate_variable != NULL ), or sometimes a counter such as in the matrix 

multiplication example. This means that this condition will not often pose a problem. 

3. The linked list iteration statement may be the only statement in the loop body that 

modifies the linked list expression. 

4. The “next” pointer member may not be identified as a data member in step 4. 

5. Any expression, other than the linked list iteration statement, that might be moved to 

an initialization loop may not have side effects. In an implementation, it is simpler to 

check this while generating the initialization loops instead of here in a separate step. 

6. Any expression that might be moved to the initialization loop may only use constants, 

loop-invariant values, members of the linked list structure, and loop control variables. 

7. Any expression that dereferences the linked list expression may not be modified. 

8. The linked list expression may not be passed to a function, because a function could 

violate condition 7 and the function could use members of the structure which means 

such usages need to be included in step four and also transformed in step six, neither 

of which can be done. 

9. If the linked list expression is guarded, it must be possible to move that entire guard, 

including both the true and false parts, to the initialization loop. 

10. When performing annihilation on a semi-dense loop, there must be a single guard that 

covers all statements in the loop body except for the linked list iteration statement 

and its guard, and statements related to loop control (such as those that increment 

the counter). This guard must meet the conditions for code that can be moved to the 

initialization loop, and it must not have an else-clause. There may be no statements 

(besides the linked list iteration statement and its guard) outside this guard. This 

ensures that there are no statements that need to be executed in iterations that would 

be eliminated by the annihilation process. 

Below is the algorithm for checking these conditions: 

function ContainsModifications(statement, expression, checkDereferenced) 

  if statement like "expression = ..." or  

     ContainsFunctionCallWithArgument(statement, pointer to expression) or 

     (checkDereferenced and statement like "*expression = ...") 

    return true 

  endif 

  foreach subExpression in expression 

    if ContainsModifications(statement, subExpression, true) 

      return true 

    endif 

  next 

  return false 

 

function ContainsFunctionCallWithArgument(statement, expression) 

  foreach functionCall in statement 

    foreach actualParameter in functionCall 

      if actualParameter = expression 

        return true 
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      endif 

    next 

  next 

  return false 

 

function HasSideEffects(expression) 

  if ExpressionContainsFunctionCall(expression) or 

     ExpressionContainsAssignment(expression) 

    return true 

  else 

    return false 

  endif 

 

function FindModificationStatements(compoundStatement, expression) 

  assignments = {} 

  statements = FlattenStatements(compoundStatement) 

  foreach statement in statements 

    if ContainsModifications(statement, expression) 

      Add(assignments, statement) 

    endif 

  next 

  return assignments 

   

# This function should not be called on the linked list iteration statement, 

# the result would be wrong. 

function CanMoveToInitLoop(loop, statement) 

  foreach subExpression in statement 

    if HasSideEffects(subExpression) or  

       not (IsLoopInvariant(loop, subExpression) or 

            IsLoopControlVariable(loop, subExpression) 

      return false 

    endif 

  next 

  return true 

   

function CanMoveToInitLoop(loop, compoundStatement) 

  statements = FlattenStatements(compoundStatement) 

  foreach statement in compoundStatement 

    if not CanMoveToInitLoop(loop, statement) 

      return false 

    endif 

  next 

  return true 

 

function IsLoopControlTrivial(loop, linkedListExpression) 

  loopCondition = GetLoopCondition(loop) 

  if HasSideEffects(loopCondition) 

    return false 

  endif 

  loopControlStatements = {} 

  foreach variable in loopCondition 

    if not IsLoopInvariant(loop, variable) and  

       not ContainsVariable(linkedListExpression, variable) 

      assignments = FindModificationStatements(GetBody(loop), variable, false) 

      if Count(assignments) <> 1 or IsGuarded(assignments[0]) or  

         IsInNestedLoop(assignments[0]) 

        return false 

      else 

        Add(loopControlStatement, assignments[0])       
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      endif 

    endif 

  next 

  statements = FlattenStatements(GetBody(loop)) 

  foreach statement in statements 

 # Check for goto or break statements; condition 2 

    if statement = "break;" or statement like "goto ..." 

      return false 

    endif 

  next 

  # store the loop control statements for later use 

  SetLoopControlStatements(loop, loopControlStatements) 

  return true 

 

function EvaluateCandidateTraversal(candidateTraversal) 

  linkedListExpression = GetLinkedListExpression(candidateTraversal) 

  loopCondition = GetLoopCondition(candidateTraversal) 

  loop = GetLoop(candidateTraversal) 

  iterationStatement = GetLinkedListIterationStatement(candidateTraversal) 

  # Check for disallowed side effects; condition 1 

  if HasSideEffects(linkedListExpression) 

    return false 

  endif 

  # Check loop condition variables for validity; condition 2 

  if not IsLoopControlTrivial(loop, linkedListExpression) 

    return false 

  endif 

  loopControlStatements = GetLoopControlStatements(loop) 

  # check function calls using the linked list expression; condition 8. 

  foreach statement in statements 

    if ContainsFunctionCallWithArgument(statement, linkedListExpression) 

      return false 

    endif 

    foreach subExpression in linkedListExpression 

      if IsPointer(subExpression) and  

         ContainsFunctionCallWithArgument(statement, subExpression) 

        return false 

      endif 

    next 

  next 

  # Check linked list expression assignments; condition 3 and 7 

  assignments = FindModificationStatements(GetBody(loop),  

                                          linkedListExpression, true) 

  if Count(assignments) <> 1 or assignment[0] <> iterationStatement 

    return false 

  endif 

  # Check if iteration statement guard and all associated statements  

  # can be moved; condition 9 

  iterationGuard = GetGuardAroundStatement(iterationStatement) 

  if iterationGuard <> null 

    if not (CanMoveToInitLoop(loop, iterationGuard) and  

       CanMoveToInitLoop(loop, GetTrueStatement(iterationGuard)) and  

       CanMoveToInitLoop(loop, GetFalseStatement(iterationGuard))) 

      return false 

    endif 

  endif 

  # Condition 10 

  if transformationMode = annihilation and LoopType(loop) = semi-dense 

    # Note: compound statement is not flattened here, so we only check 
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    # statements directly inside the loop, not further nested statements. 

    guardFound = false 

    foreach statement in GetBody(loop) 

      if statement <> iterationGuard and statement <> iterationStatement 

        if statement like "if( expression ) ..." and not guardFound 

          if not CanMoveToInitLoop(loop, expression) 

            return false 

          endif 

          guardFound = true 

        else if not Constains(loopControlStatements, statement) 

          return false 

        endif 

      endif 

    next 

  endif 

  return true  

The code above checks all conditions except 4, 5 and 6. Before condition 4 can be checked, it 

is necessary to find data members, which will be done in the next step. And as indicated, 

conditions 5 and 6 are more easily checked when the code sections to which they apply are 

identified in later steps. The code for the next steps will use some of the functions defined here 

to aid in those checks. 

There are three other global conditions that are not checked but assumed to be true for any 

code marked safe for transformation. The first is that there is no aliasing, or at least that all 

aliasing done is safe. If there is another variable that actually aliases the linked list expression, 

the above conditions would not consider a write to such a variable harmful even though it 

actually is. Trying to determine whether this is the case is a very difficult problem since it must 

be done globally. It is possible that a global variable aliases the linked list expression, and that a 

function, called in the loop body, ends up modifying this value. In the example, the Matrix 

structure is passed by value, but it contains two pointers, each of which might have a global alias 

created before the MatrixMultiply function is even called. Indeed, any of the Cells pointed to in 

the matrix may have some global variable pointing to it, which means that in some iterations the 

current value of leftCell might have an alias and in others not. One can mitigate some of this by 

posing some strict requirements, such as prohibiting global variable accesses, including in any 

functions called. That would still leave aliasing through function parameters, which cannot be 

analyzed at all unless you know every possible invocation point of the function (and even then it 

is very difficult) and local aliases. Some steps can be taken to reduce the problem of aliasing, 

which are taken in the normalization described in Section 3.5.1, but we cannot completely solve 

the aliasing problem. 

The second condition is that no external processes may modify any value. A small check could 

be done in the program which would disqualify the use of variables marked volatile, but even if 

none are marked so it does not exclude external interference (memory boundaries may be 

enforced in other ways such as operating system-specific critical sections or other 

synchronization primitives). 

The third condition is that usages of the linked list members are independent. If they are only 

read, the first and second condition will ensure that this is true (since the member may not be 

modified by aliasing or by external code). If a member is written to, a write in one iteration may 

not affect a read or write in a later iteration. Unless the linked list contains cycles, this is unlikely 

to happen anyway. 

We must simply assume that these conditions are met, and require the user to provide only 

input code that meets them. If code that breaks these rules is transformed, transformation will 
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succeed but likely yield code that does not do the same as the original code anymore, or, worse, 

that sometimes behaves the same and other times does not depending on synchronization, 

initial values, or other external factors. 

For safety, it is assumed that by default that all code in the translation unit is unsafe to 

transform. It will look for transformation directives that denote safe code sections or individual 

loops, and only attempt to transform those that are indicated safe. Code marked safe is only 

assumed to meet the criteria that cannot be checked. All the requirements that can be checked 

will be checked, so marking a loop as safe to transform is no guarantee that it can or will be 

transformed. Transformation directives are further covered in section 3.6. 

The normalization mentioned earlier and discussed in further detail in section 3.5 is of great 

importance for this step, since it needs to be able to reliably determine if expressions are used in 

safe ways in the loop body. If equivalent expressions are not of the same form, unsafe usages 

may be missed, leading to unsafe transformations. 

In order to evaluate this step, data dependence and flow analysis must be performed on all 

variables. For every usage of a variable, it must be known what other values that variable 

depends on, i.e. those values used when that variable was last assigned to. This is a fairly 

straight-forward process that most compilers will do anyway to determine where instructions 

can be reordered or removed. Here, the information is used to find loop-invariant variables and 

to find indirect usages of important values. Therefore, whenever the above list of conditions 

mentions a usage of a variable (or expression), this may also mean that a variable (or 

expression) is used that depends on that variable. 

The list of conditions in this step contains only those conditions that are strictly necessary for 

this transformation. In this thesis, we will further transform the code by translating it to 

FORTRAN. Some additional conditions apply to make this translation possible, which will be 

covered in the relevant section. 

3.4.4 Find data members 

In order to generate replacement dense data structures, it must be known what data this 

dense data structure should contain. In other words, it needs to determine what members of the 

linked list candidate structure are used to store either input or output data relevant to the 

computation. To find this, it must consider all members besides the linked list next pointer 

already identified. If a structure contains more than one “next” pointer, we will exclude only the 

one that is actually used in this candidate traversal. 

This analysis must be done for each candidate linked list traversal; it cannot be stored per 

structure and re-used. This is because we want to have the smallest possible number of data 

members, and not each usage of the linked list structure needs to actually use all the remaining 

members. 

The first part of this step is to look at the loop body, including any nested loops, and find all 

members of the structure that are used. Obviously members that are not used at all need not be 

given any further consideration. 

However, it is not the case that all members that are used must automatically be data 

members. Members that are written to will always be considered data members, but for a 

member that is read to be considered as a data member the read operation must affect some 

variable that is used after the current loop iteration. That means it is either assigned to a 

variable that will be read after the iteration, or it participates in a guard of a modification of a 

variable that is used after the iteration. Because function calls can have side-effects, guarding a 

function call also counts. 
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Consider the following example: 

int prev = 0; 

while( node != NULL )  

{ 

  node->Value2 = prev; 

  prev = node->Value1; 

  node = node->Next; 

} 

This loop sets the Value2 member to the value of the Value1 member of the previous node in 

the list (this is not a particularly likely operation to perform on a sparse list, but that is not the 

point). The value of prev is not used after the loop, but it is used in the loop body before it is 

assigned to again. This means that, in the flow of execution of the loop, the value of prev will be 

used after the current iteration of the loop ends. This means that the value of node->Value1 

affects something that happens after the iteration in which it is read, so node->Value1 must be a 

data member. 

int remainder; 

while( node != NULL )  

{ 

  remainder = node->Value % 2; 

  if( remainder == 1 ) 

    Foo(); 

  node = node->Next; 

} 

This example calls the function Foo() for odd values of node->Value. Here, node->Value is 

assigned to the variable remainder, which is not used after the loop or across iterations. So at 

first glance, Value would not qualify as a data member. However, the value of remainder is used 

in an if-statement which guards a function call. This function call might set global variables, 

write output to a file or the console, make a network connection, etc.; i.e. it can have any number 

of side effects that last beyond the scope of the loop. This means that node->Value is a data 

member after all. 

As you can see, data dependence analysis is absolutely vital to finding data members. 

If a potential data member is used only in a guard, there is still the possibility that it does not 

need to be a data member. If the guard that uses the data member will be moved to the 

initialization loop and completely eliminated from the transformed main loop, the member 

would not count as a data member. A guard will be moved to the initialization loop only if: 

• It is used to guard the linked list iteration statement. This guard construct will be 

moved in its entirety to the initialization loop, so it is not needed in the transformed 

main loop. 

• It guards the usage of other identified data members, and the guard that this value is 

part of uniquely determines whether the other data member is used or not (if the 

member is used in the true-part of the guard that uses the data member, it may not be 

used in the false-part, or vice versa, and it may not be used outside the if-statement). 

In this case, the fill-in value, or if necessary an additional validity check (as indicated 

in the next section) will replace this guard, so it will no longer be present in the main 

loop after transformation.  

Naturally, the guard expressions must meet the conditions set in the previous section for 

code that will be moved to the initialization loop. 

Again, data dependence analysis is used: 
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int product = 1; 

int temp; 

while( node != NULL )  

{ 

  temp = node->Value; 

  if( node->Index % 2 == 0 ) 

    product *= temp; 

  node = node->Next; 

} 

This computes the product of those values that have an even numbered dense index. Without 

using dependency analysis, we would say that node->Index is used to guard an operation with 

side-effects, and it does not uniquely guard a data member, so it must be a data member. 

However, although node->Value is read outside the guard, it is in actuality only used if the guard 

evaluates to true, because it is assigned to temp, and temp is only used inside the guard. So using 

data dependence analysis, we can show that node->Index uniquely guards the use of node-

>Value, which means  it can be removed if there is a fill-in value for node->Value or replaced 

with a validity check if there is not. This means that this expression will be removed from the 

transformed loop so node->Index is not a data member. 

Furthermore, if the dense index expression supplied by the DENSE_INDEX directive uses a 

member of the linked list structure, if that member is read in the loop it is still not a data 

member, as its usage can be replaced by the counter for the new loop. 

Let us look at the innermost loop of the matrix multiplication algorithm as an example: 

for( x = 0; x < dimensions; ++x ) 

{ 

  if( leftCell != NULL && leftCell->ColIndex < x ) 

    leftCell = leftCell->ColNext; 

 

  if( leftCell != NULL &&  

      leftCell->ColIndex == x && 

      leftCell->RowIndex == row ) 

  { 

    result[row][col] += leftCell->Value * right[x][col]; 

  } 

} 

The linked list traversal we are looking at is that of leftCell, a variable of type Cell. We see that 

the following members are used: the leftCell pointer value itself (in a comparison to NULL), and 

the members Value, ColIndex and RowIndex (note that once again, we are not looking at names, 

so we are ignoring the fact that one of the members is conveniently named Value; even if we did 

this, it would not guarantee that the other members could be discarded, so it would not help). 

Value is used on the right-hand side of an assignment, and is assigned to something that was 

passed by reference to this function, which means it can be used after the function returns, 

which is after the loop iteration, so Value is most certainly a data member. The pointer value, 

ColIndex and RowIndex are used in guards. The first guard is the guard of the linked list 

statement, which will be moved entirely to the initialization loop, so according to the first point 

above, we can ignore it. The second guard uniquely guards the use of Value, and all usages meet 

the criteria of the previous section (since NULL is a constant, x is the loop control and row is 

loop-invariant). This means that these three guard expressions can be replaced by a validity 

check or removed entirely if a suitable fill-in value is found (see the next section), and that none 

of these three members are data members, leaving only Value. 
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Note that it is perfectly valid for the pointer value itself to be identified as a data member. 

However, if this has not been eliminated after transformation, it will obstruct translation to 

FORTRAN. Fortunately, that is not the case in this example, and it would not likely often be the 

case either. Still, it is important to realize that this would not be a problem for the 

transformation itself, only for the follow-up steps we wish to take in this thesis. 

The algorithm for step four: 

function WillBeRemoved(guardStatement) 

  ; Find which data members are used when the guard evaluates true or false. 

  trueDataMembers = GetDataMembersForCompound(GetTrueStatement(guardStatement) 

  falseDataMembers = 

       GetDataMembersForCompound(GetFalseStatement(guardStatement) 

  ; If the two are not the same, there is a member that is used 

  ; in one but not the other, thus this guard will be removed 

  return trueDataMembers <> falseDataMembers 

 

function FindDataMembers(traversal) 

  dataMembers = {} 

  listStruct = GetLinkedListType(traversal) 

  listExpression = GetLinkedListExpression(traversal) 

  loopCondition = GetLoopCondition(traversal) 

  loop = GetLoop(traversal) 

  iterationStatement = GetLinkedListIterationStatement(traversal) 

  loopBody = GetBody(loop) 

  compound = GetInnermostUnprocessedCompound(loop) 

  while compound <> null 

    ; Statements are not flattened, so it does not process  

    ; nested compound statement 

 foreach statement in compound 

      foreach member in listStruct 

        if ContainsModifications(statement, "listExpression->member", false) 

          ; Write always means a data member 

          Add(dataMembers, [ member, Write ]) 

          AddDataMemberForCompound(compound, member) 

        else if not IsDenseIndexExpression("listExpression->member") and  

             ((statement like "lvalue = rvalue" and 

             ContainsDependantExpression(rvalue, "listExpression->member") and 

             IsUsedAfterLoopIteration(loop, lvalue)) or 

             (statement like "if( expr )" and  

             ContainsDependantExpression(expr, "listExpression->member") and 

             not (statement = GetGuard(iterationStatement) or  

             WillBeRemoved(statement)))) 

          ; this is a read that has effects outside the iteration or is a guard  

          ; that is not the guard for the iteration statement and not a guard 

          ; that can be moved. 

          Add(dataMembers, [ member, Read ]) 

          AddDataMemberForCompound(compound, member) 

        endif 

      next 

    next 

    SetProcessed(compound) 

    compound = GetInnermostUnprocessedCompound(loop) 

  end while 

  if Contains(dataMembers, GetNextPointerMember(traversal) 

    return null 

  endif 

  return dataMembers 
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The algorithm processes compound statements in nesting order, starting with the most 

deeply nested statement that has not yet been processed (for the purposes of this algorithm, if a 

“for” or “if” or similar statement has only a single nested statement instead of a compound, this 

is still treated like a compound). This way whenever an if-statement is encountered it is already 

known what data members are used in the statements it guards. The 

GetDataMembersForCompound function, which is used in determining if a guard uniquely 

guards a data member and will therefore be removed or replaced in the transformed loop, 

returns only those data members that are used in all code paths of the given compound, 

ensuring that nested if-statements are correctly handled. 

Data dependence analysis results are used by the function ContainsDependantExpression; 

this function returns true if the expression in the first parameter contains any expression that is 

dependent on the expression in the second parameter. IsUsedAfterLoopIteration also uses data 

dependence analysis to determine if the value of the expression in the second parameter is used 

beyond a single iteration of the specified loop, as was explained in the beginning of this section. 

3.4.5 Generate dense data structures 

Once the data has been identified, a dense array must be generated that holds this data. 

Important points in this step are determining the element type and the bounds of this array. 

The element type is relatively straight-forward. It is ideal if there is only a single data 

member, because then this can be used as the array type (provided a validity flag is not needed, 

which is explained below). Otherwise a structure must be generated that can hold all the 

identified data members. 

The sparse linked list does not include all the values of the original data. If the original loop 

was a sparse loop, the transformed loop will have more iterations than the original. The 

operations that are performed on the data members in the loop body cannot be blindly executed 

in the added iterations; this might change the semantics of the code. We must make sure that for 

those values that were omitted in the original linked list, the operation is either not executed or 

has no effect. For semi-dense loops the same thing applies, but only for operations on data 

members that are not executed in all possible code paths through the loop body. If they are 

executed in all code paths, they can safely be executed in all iterations of the new loop as well, 

since for a dense loop the number of iterations stays the same for sublimation. 

With annihilation this is slightly different. Since the loop will not gain iterations, there is no 

need to prevent anything from being executed. In a semi-dense loop there will be fewer 

iterations after transformation, so anything that is executed on all code paths will actually be 

executed fewer times; because there is no good way to deal with this, annihilation is impossible 

in these cases; this is expressed by condition 10 in section 3.4.3. 

But for sublimation, we must find a way to nullify these operations. There are two ways to do 

this: for each identified data member, we can try to find a fill-in value that causes these 

operations to have no effect, or we must introduce a flag that indicates whether the value at that 

position in the array is valid, which can be used to guard the relevant operations. This must be 

done separately for each data member; so if there is more than one data member, we might end 

up needing more than one flag.  Finding a fill-in value is preferable to using a flag, since it will 

greatly simplify the transformed main loop, easing further optimization. 

Obviously, data members that are only written to do not need a fill-in value or a guard. Post-

initialization loops only read the valid values, so it does not matter what is written to the array 

indices that represent fill-in positions. 
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If we are to use a fill-in value for a data member, we must be certain that it eliminates all side-

effects from the operation that use that data member or are otherwise affected by it (for 

example via a dependant variable). That means that no variables whose values would normally 

change may change their value now. If the data member is part of a guard, the fill-in value must 

be such that the guard evaluates to a value that causes any statements with side effects not to be 

executed. If the data member is used directly in an assignment, the value being assigned to may 

not change. Finding a semantically correct fill-in value automatically is however not a trivial 

matter. As has been noted in [3], certain operations are known to have no effect, such as 

multiplying by one or adding zero to a variable. This means that if the data member participates 

in a multiplication or addition, one or zero respectively could be the correct fill-in value. In the 

case of the matrix multiplication example, if the guard evaluates true, a value is added to the 

result, and that value is the data member of the linked list variable multiplied by another value, 

and if the guard evaluates false, nothing is added. It is therefore conceivable that an 

implementation of the transformation could determine that zero is a safe fill-in value, because it 

would cause zero to be added to the result, which is the same as doing nothing. 

Alternatively, the programmer can use directives to indicate what the fill-in value should be. 

In this case it falls on the programmer to ensure that the fill-in value is correct. 

If it is not possible to find a fill-in value, a guard must be put in place that prevents these 

operations from happening. In these cases, a validity flag for that data member is added to the 

list of data members. The initialization loop will make sure that this flag is set to true for those 

array indices where the value of the data member comes from the linked list, and false when it 

does not. The guard in the transformed loop that is placed around the operation will check this 

flag. If there is already a suitable guard in the original loop, as will often be the case in semi-

dense loops, it may be replaced by this new guard. 

Of course finding a fill-in value is preferable, since that means no new guards need to be 

added and some of the old guard might be removed completely. 

For a semi-dense loop, where a guard is used in the original loop to distinguish between valid 

and omitted iteration values, it may be the case that this guard is responsible for other 

statements with side effects as well, that do not involve any data member (such statements can 

be in either the true or false part of the guard). This means that, even if a fill-in value for the data 

member is known, not all side effects related to the guard are eliminated, so the guard must be 

maintained. Similarly, in a sparse loop, any statements that do not involve the linked list 

expression will need to be prevented from execution on iterations that were introduced by the 

transformation, so a validity flag is needed. In this case, if a fill-in value is known, the guard can 

use a test for this fill in value so no validity flag needs to be added. 

If a guard uniquely guards more than one data member, the guard can be omitted only if fill in 

values for all data members can be found that eliminate the side-effects from all guarded 

statements. 

Let us once again recall the innermost loop of matrix multiplication example. 

for( x = 0; x < dimensions; ++x ) 

{ 

  if( leftCell != NULL && leftCell->ColIndex < x ) 

    leftCell = leftCell->ColNext; 

 

  if( leftCell != NULL &&  

      leftCell->ColIndex == x && 

      leftCell->RowIndex == row ) 

  { 
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    result[row][col] += leftCell->Value * right[x][col]; 

  } 

} 

This loop is semi-dense; “dimensions” is the original dense upper bound, and even though the 

sparse linked list contains less than “dimensions” values, there are still “dimensions” iterations. 

As we noted in the previous section, the single data member “Value” is uniquely guarded by a 

guard that can be completely moved into the initialization loop. Since there are no other 

statements in the guard body besides the one that uses the data member, finding a fill-in would 

be ideal since it would mean we can remove the guard entirely. 

There is indeed a fill-in value here, but let us first take a look at what would happen if the 

compiler was unable to find it. In that case, a validity flag is necessary to indicate whether 

“Value” should be used. This means that a new structure is needed for the dense array which 

contains this validity flag. The transformation would generate the following structure: 

struct CellData 

{ 

  float Value; 

  int ValueValid; /* boolean flag */ 

}; 

ValueValid is the flag for the Value data member; it is a Boolean value but has type int since C 

has no Boolean type. You will notice that the name of this dense structure is the name of the 

original linked list structure followed by “Data”. Naturally, the name does not actually matter; in 

a real implementation, some steps would need to be taken to ensure a unique name, but other 

than that, the name can be arbitrary. 

The transformation will create an array of CellData values (which we will call “leftCellArray” 

because it replaces the leftCell linked list variable), and initialize each ValueValid flag to false. 

The initialization loop will use the original guard around “Value”, and when it evaluates true it 

will set “Value” and set “ValueValid” to true. 

 The guard can for the transformed loop will be replaced by the guard if( 

leftCellArray[x].IsValid ). More details about how this transformation actually takes place 

will follow in the next section. 

As we indicated, there is in fact a fill-in value here, namely the value zero. This value causes 

the statement involving “Value” to have no effect; the value of “result[row][col]” does not change 

if “Value” is zero (zero is probably the most common fill-in value for sparse data structures, 

especially sparse matrices, however it need not always be; we have already seen an example 

where it was one instead). 

If it can be determined that zero is the fill-in value, either automatically or from a directive, 

this can lead to a significant simplification of the resulting code. The “Value” member is now the 

only data member, so a new structure is not necessary. Instead, the element type for the dense 

array will simply be float, the type of the value member. Because there are no other statements 

with side effects, the guard around the statement using “Value” can be eliminated entirely. 

We also need to determine the dimensions of the dense array. It would be most preferable if 

the dimensions are a constant, but that is unlikely. Even if they are not, it is preferable that a 

simple expression, whose value can be determined a priori at runtime, determines the 

dimensions. If the loop we are transforming is a semi-dense loop, and the loop is countable, we 

iteration count of the loop is the size needed for the array. In the matrix multiplication example, 

the loop is countable and the number of iterations depends on the value of “dimensions”, so the 
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value of that variable is the size of the array. This expression will be used to allocate the array, 

and in the next step also as the upper bound for the dense loop. 

In the case of a sparse loop, we cannot automatically determine if such an expression exists. 

In this case, the DENSE_DIMENSIONS transformation directive can be used to indicate what 

expression to use. 

But in certain situations there is no such expression, for example when using annihilation 

where the dimensions will depend on the density of the data, and there might not be any way to 

find that other than walking the linked (in the matrix example there is not). We must also be 

prepared with a situation where even though there is such an expression, we cannot determine 

what it is and no directive is specified either. In these cases, we can use a dynamically growing 

array. To minimize the overhead of dynamically allocating and reallocating an array, we will use 

the typical approach used by many dynamic array implementations (such as C++’s std::vector 

class in most STL implementation) where the array is doubled in size each time it must grow. A 

counter is kept during execution of the initialization loop which indicates the length of the array. 

After the initialization loop is complete, the value of this counter can be used as the upper bound 

for the new transformed main loop. 

For a post-initialization loop this is more troublesome, as the array it uses is allocated before 

the main loop so the size cannot be determined during the initialization loop. In some cases a 

post- and pre-initialization loop share the same array, which solves the problem, but otherwise 

an additional pre-initialization loop is needed that does nothing except walk the linked list and 

count the number of iterations if the bounds cannot be determined at compile time. 

If we are doing annihilation and the dense index expression is used (which for semi-dense 

loops means the loop counter), the original index value will be needed. If this value is read 

anywhere in the loop (with the exception of the loop control statement for a semi-dense loop), 

an array with the relevant values of the index expression will be generated. This dense data 

structure is a simple array where the element type is the same as the type of the index 

expression (usually int). In order to prevent introducing irregularity in the loop, we will make a 

special case for when the expression is used to index an array. Here creating an array for the 

index expression would introduce indirection for the array it was indexing, so instead a new 

array will be generated with the same element type as the original array, which will be mapped 

to the original array during pre- or post-initialization. This can only be done if all other 

components of that expression are loop-invariant and safe to move to the initialization loop. 

For example, in the matrix multiplication example, the loop variable x of the innermost loop is 

used to index the “right” array. That means if annihilation is performed, a new array to replace 

“right” is generated, and because the resulting type of “right[x]” is int*, the replacement array’s 

element type will be int* as well. 

The pseudo code algorithm for step five is given below. 

function NeedsFillIn(loop, dataMember) 

  return not (AccessType(dataMember) = Write or  

         (IsSemiDense(loop) and  

         IsUsedOnAllCodePaths(GetBody(loop), dataMember)) 

          

function FindAdditionalExpressionsNeedingTransformation(loop, 

                                                       linkedListExpression) 

  expressions = {} 

  indexExpression = GetIndexExpression(loop) 

  foreach variable in loopControlVariables 

    transformVariable = false 

    foreach statement in FlattenStatements(GetBody(loop)) 
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      if not (ContainsExpression(linkedListExpression, variable) or 

         IsLoopControlStatement(statement)) and 

         ContainsExpression(statement, variable) 

        # this statement reads the variable but is not a loop control 

        # statement like x++ 

        foreach subExpression in statement 

          if ContainsExpression(subExpression, variable) 

            if subExpression is array index expression 

              # This is an array subscripted by this variable,  

              # transform the array 

              Add(expressions, subExpression) 

              if IsModification(subExpression) 

                AddUnique(AccessTypes(subExpression), Write) 

              else 

                AddUnique(AccessTypes(subExpression), Read) 

              endif 

            else 

              transformVariable = true 

            endif 

          endif 

        next 

      endif 

    next 

    if transformVariable 

      Add(expressions, variable) 

      AccessTypes(variable) = { Read } 

    endif 

  next 

  return expressions 

 

function GenerateDataStructures(traversal, dataMembers) 

  listExpression = GetLinkedListExpression(traversal) 

  loop = GetLoop(traversal) 

  iterationStatement = GetLinkedListIterationStatement(traversal) 

  denseArrays = {} 

  accessTypes = {} 

  foreach dataMember in dataMembers 

    if NeedsFillIn(loop, dataMember) 

      fillIn = GetFillIn(loop, dataMember) 

      if fillIn <> null 

        SetFillIn(dataMember, fillIn) 

      else 

        Add(dataMembers, CreateFlag(dataMember)) 

      endif 

    endif 

    AddUnique(accessTypes, AccessType(dataMember)) 

  next 

  if Count(dataMembers) = 1 

    arrayType = TypeOf(dataMembers[0]) 

  else 

    arrayType = new struct 

    foreach dataMember in dataMembers 

      AddMember(arrayType, dataMember) 

    next 

  endif 

  arrayLength = GetDenseDimensions(traversal) 

  Add(denseArrays, [linkedListExpression, arrayType, arrayLength, accessTypes]) 

  if GetTransformationType() = annihilation 

    foreach expression in FindAdditionalExpressionsNeedingTransformation(loop, 
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                          listExpression) 

      Add(denseArrays, [ expression, GetType(expression), arrayLength, 

                         AccessTypes(expression) ]) 

    next 

  endif 

  return denseArrays 

The GenerateDataStructures code will return a list of triplets, each indicating the source, type 

and length of a dense array that will need to be generated. The function GetDenseDimensions is 

used to determine the length; it will read the DENSE_LENGTH transformation directive or use 

automatic means to try and determine the length. If it cannot determine it, its return value is -1, 

which will be a cue for the transformation algorithm to use a dynamic array. 

The GetFillIn function uses the FILL_IN directive and perhaps some of the procedures 

indicated above to find the fill-in value. 

3.4.6 Generate initialization loop and transform main loop 

We can now categorize every statement in the original main loop based on the information 

gathered in the previous steps. Statements will be classified as one or more of the following: 

1. Data member access: these statements access the identified data members of the 

linked list, and must thus be transformed to use the new dense structure. The 

algorithm will also mark whether it is being read or written. 

2. Loop control variable access (direct): for annihilation on a semi-dense loop, these are 

statements that are not directly part of the loop control itself (so the statement that 

increments the value is not considered) but they do use the loop control variable for 

some purpose other than array indexing. Guard statements that will be moved to the 

initialization loop will not be marked this way. This will always be a read, since this 

value may not be written to outside the loop control due to the requirements stated in 

section 3.4.3. 

3. Loop control variable access (indexing): same as above, only the variable is used to 

index an array. Read or write access to the referenced array element is marked. 

4. Linked list iteration statement: this statement must be moved to the initialization 

loop. 

5. Guard for the linked list iteration statement: idem. This includes all statements under 

that guard. 

6. Guard where the compound statement in the true or false part contains a statement of 

category one, two or three. Statements will be marked category six separately for 

each value that is read or written in such a statement in the true or false part. If the 

value is accessed in all possible control paths in both the true and false parts of the 

guard, the guard need not be present in the initialization loop and thus will not be 

marked category 6. 

7. Loop control statements. For example, this is the statement that increments the loop 

counter. A sparse loop typically does not have any loop control statements. 

8. Other statements: all statements involving the linked list variable must necessarily be 

of one of the first six categories, so this leaves statements that do not involve the 

linked list variable at all. These do not need to be transformed and will be left in the 

transformed loop unmodified. 

In section 3.4.7 we will see that there is another category of statement that can be present in 

the loop, namely previously generated initialization loops that we are attempting to extract from 
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this loop. These statements are ignored here; they are not added to the initialization loops and 

they are not retained in the transformed main loop either. They are dealt with separately. 

Using this classification, the transformation can generate the initialization loops and the 

transformed main loop. 

Below is the innermost loop of the matrix multiplication example, with the categories for 

each statement indicated in the comments. 

for( x = 0; x < dimensions; ++x /* 7 */ ) 

{ 

  if( leftCell != NULL && leftCell->ColIndex < x ) // 5 

    leftCell = leftCell->ColNext; // 4 

 

  if( leftCell != NULL &&  

      leftCell->ColIndex == x && 

      leftCell->RowIndex == row ) // 6 (for leftCell->Value and x) 

  { 

    result[row][col] += leftCell->Value * right[x][col]; // 1 (read), 3 (read) 

  } 

} 

The assignment is both category one and three: one for the use leftCell->Value, and three for 

the use of x (which is only relevant for annihilation). The guard statement uniquely guards both 

of these, so it is marked category six for both of them. 

The assignment is category three, not two, because it uses x to index the array “right”. This 

means that the value that will be copied to the replacement array is that of “right[x]”. 

In the real transformation, this for-loop would have been transformed into a while loop by 

the normalization. This means that the “++x” expression would have been a separate statement 

at the end of the loop, which is category seven. 

3.4.6.1 Loop termination 

Several loops will be generated during the transformation process – the transformed main 

loop and one or more pre- and post-initialization loops – and they will all use one of two possible 

termination guards: the original guard from the untransformed main loop, or the new guard for 

the dense loop. The new loop statement will always be a for-loop, e.g. for( x = 0; x < 

dense_length; ++x ) where x is a new counter variable introduced by the algorithm, and 

dense_length is the total number of elements in the dense array. 

When dealing with sublimation on a semi-dense loop, the new and old guard will often be the 

same. 

3.4.6.2 Pre-initialization 

The pre-initialization loops can use either the original or the new loop guard. The original 

guard must be used if the length of the dense array is not known yet (which will always be the 

case for annihilation). In other cases, the new guard can be used. Which it will use then depends 

on whether there is a fill-in value, and if it can be set using a single operation. For example, if the 

fill-in value is zero, it is most efficient to initialize the whole dense array to that value using the 

memset function in C. If that is not possible, the new guard must be used. If any of the statements 

that need to be moved to the initialization loop use any of the original loop control variables, the 

loop must also use the original loop guard. 

The transformation algorithm will now generate statements for the initialization loop based 

on the categories of the original statements, maintaining their relative order from the original 

loop. 
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The first statements in the loop will be statements to set the data members are to their fill-in 

value or their flags to false. If the fill-in was set in advance using memset, this is not necessary 

and these statements are omitted 

For statements that fall into category one, two or three where the value is being read, a 

statement is generated that copies the value into the array that will replace it. If the statement 

has more than one such value, it will generate more than one statement. These statements will 

have the following form: 

array[index_expression]->member = original_value; 

Here, array is the dense data structure generated in the previous step that matches the data 

member or other value represented by original_value. The index_expression will be either 

the counter variable if one is available, or the expression that can be used to retrieve the original 

dense index which was determined earlier (specified by a directive).  If the element type of the 

dense array is a structure, the member that matches the value being read is specified. Otherwise, 

that part of the statement is omitted. An example of such a statement for the matrix 

multiplication sample would be: 

leftCellArray[x] = leftCell->Value; 

If a validity flag is used, this statement will be immediately followed by a statement that sets 

the validity flag associated with that value to true. 

Category four statements, i.e. the linked list iteration statement, will be copied verbatim to 

the initialization loop. The same is true for its guard (category five). 

Category six statements uniquely guard some data member; these guards are copied to the 

initialization loop.  

Category seven statements are copied to the initialization loop if the original loop guard is 

used; they are needed to ensure the same loop progression. 

Category eight statements are left alone; these will not be used in the initialization loop. 

If the new loop guard is used for the initialization loop and the original loop was sparse, an 

additional guard of the following form will be added: 

if( linked_list_expression != NULL && index_expression == counter ) 

Here index_expression is the expression used to retrieve the dense index specified using a 

directive, and counter is the counter variable of the new loop guard. This guard simply checks if 

the dense index of the current linked list position matches the loop index. The entire loop body 

will be placed under this guard. 

For the matrix transformation example, this leads to the following pre-initialization loop for 

the leftCell value in the inner loop, using sublimation: 

leftCellArray = malloc(sizeof(float) * dimensions); 

 

memset(leftCellArray, 0, sizeof(float) * dimensions); 

for( x = 0; x < dimensions; ++x ) 

{ 

  if( leftCell != NULL && leftCell->ColIndex < x ) 

    leftCell = leftCell->ColNext; 

 

  if( leftCell != NULL &&  

      leftCell->ColIndex == x && 

      leftCell->RowIndex == row ) 

  { 

    leftCellArray[x] = leftCell->Value; 
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  } 

} 

Using annihilation, we get a slightly different loop for leftCell, and an additional loop for 

right[x], which as noted earlier is necessary because the progression of x will change in the main 

loop. Below is the loop for right[x], which uses a dynamically growing array. 

rigthArrayLength = 100; 

rightArray = malloc(sizeof(float*) * rightArrayLength); 

newDimensions = 0; 

// Initialisation loop 

for( x = 0; x < dimensions; ++x ) 

{ 

  if( newDimensions >= rightArraySize ) 

  { 

    leftCellArraySize *= 2; 

    rightArray = realloc( 

           rightArray, sizeof(float*) * rightArraySize); 

  } 

  if( leftCell != NULL && leftCell->ColIndex < x ) 

    leftCell = leftCell->ColNext; 

 

  if( leftCell != NULL &&  

      leftCell->ColIndex == x && 

      leftCell->RowIndex == row ) 

  { 

    rightArray[newDimensions] = right[x]; 

    ++newDimensions; 

  } 

} 

As said earlier, there are a few situations where the upper bound to use for the new loop 

guard will not yet be known. A counter will be added to an initialization loop that counts the 

number of valid elements to determine what this bound is (called newDimensions in this 

sample). This counter can then also be used for the index_expression mentioned above. If there 

are no pre-initialization loops (for instance because only post-initialization is needed) and it is 

necessary to get this upper bound, a pre-initialization loop will be generated that does nothing 

but get this count. The final value of this counter will be used as the upper bound for the new 

loop guard. 

Although no values from leftCell are being read, it is still necessary to use it in the 

initialization loop to determine which values of the “right” array need to be used. 

Sections 3.1 and 3.2 show additional annihilation examples where a count is used in the pre-

initialization loop. 

All our examples so far have directly used the linked list expression (e.g. leftCell) in the 

initialization loops. If there is more than one initialization loop, they will all depend on the initial 

value of leftCell being what it was in the original code, so this is not safe. Instead, a new variable 

will be used that is initialized to the value of the original linked list expression and substituted 

for it in the initialization loops. After the final post-initialization loop – or directly after the main 

loop if there is no post-initialization – the original linked list expression will be set to the value of 

the copy so that its value after the transformed code matches that of the original code. 

The algorithm for generating the pre-initialization loops is as follows: 

function GeneratePreInitLoop(traversal, denseArray) 

  initStatements = {} 
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  localVariables = {} 

  length = GetLength(denseArray) 

  arrayType = GetType(denseArray) 

  source = GetSource(denseArray) 

  sourceType = GetType(source) 

  originalLoop = GetLoop(traversal) 

  canBulkInit = false 

  if source = GetLinkedListExpression(traversal) 

    canBulkInit = true 

    foreach dataMember in arrayType 

      if GetFillIn(dataMember) <> 0 

        canBulkInit = false 

      endif 

    next 

  endif 

  Add(localVariables, "arrayType *sourceArray;") 

  Add(localvariables,  

      "GetType(linkedListExpression) linkedListExpressionCopy;") 

  Add(initStatements, "linkedListExpressionCopy = linkedListExpression"); 

  newGuard = false 

  if length = -1 

    # unknown length means dynamic array is needed 

    Add(initStatements, "sourceArray = InitDynamicArray(sizeof(arrayType));" 

    Add(localVariables, "int linkedListeDenseLength;") 

    Add(initStatements, "linkedListDenseLength = 0;") 

    Add(initStatements, GetLoopExpression(originalLoop)); 

  else 

    Add(initStatements, "sourceArray = malloc(length * sizeof(arrayType));" 

    if canBulkInit 

      Add(initStatements, "memset(sourceArray, 0, length * sizeof(arrayType));" 

      Add(initStatements, GetLoopExpression(originalLoop)); 

    else if LoopControlVariableNeeded(originalLoop) 

      if IsSemiDense(originalLoop) 

        Add(initStatements, GetLoopExpression(originalLoop)) 

      else 

        # if the original loop is sparse, the original loop guard must be 

        # used and bulk initialisation is not possible, we must abort 

        return null 

      endif 

    else 

      Add(initStatements,  

          "for( sourceCounter = 0; sourceCounter < length; ++sourceCounter )") 

      newGuard = true 

    endif 

  endif 

  Add(initStatements, "{") 

  # GetDensePosition returns an expression that can be used to determine  

  # the dense array index; for a semi-dense loop or if the new loop guard 

  # is used, this is the counter, otherwise it is the expression specified  

  # by the DENSE_INDEX directive 

  densePos = GetDensePosition(traversal) 

  if length = -1 

    # Insert statements to grow the dynamic array and initialise skipped  

    # positions if necessary 

    AddArrayGrowthStatements(initStatements, traversal, denseArray, densePos) 

    Add(initStatements, "++linkedListDenseLength;") 

  endif 

  if not canBulkInit and source = GetLinkedListExpression(traversal) 

    if arrayType is struct 
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      foreach dataMember in arrayType 

        fillIn = GetFillIn(dataMember) 

        if fillIn = null     

          # set validity flag to false 

          Add(initStatements, "sourceArray[densePos]->dataMemberValid = 0;") 

        else 

          Add(initStatements, "sourceArray[densePos]->dataMember = fillIn;") 

        endif 

      next 

    else 

      # if it is not a struct it must have a fill-in; if not there would have 

      # been a flag so it would have been a struct 

      fillIn = GetFillIn(dataMember) 

      Add(initStatements, "sourceArray[densePos] = fillIn") 

    endif 

  endif 

  if not IsSemiDense(originalLoop) and newGuard 

    Add(initStatements,  

        "if( linkedListExpression != NULL && densePos == sourceCounter ) {" 

  endif 

  foreach statement in FlattenStatements(originalLoop) 

    # Get the category this statement has for this source expression 

    categories = GetStatementCategories(statement, source) 

    foreach category in categories 

      switch category 

        case 1, 2, 3 

          if GetAccessType(statement, source) = Read 

            # Get the actual expression for this access, e.g. node->Value. 

            accessExpression = GetAccessExpression(statement, source) 

            accessExpression = Replace(accessExpression,  

                                      "source", "sourceCopy") 

            if not CanMoveToInitLoop(accessExpression) 

              abort 

            endif 

            if arrayType is struct 

              member = GetMemberForAccess(statement, source) 

              Add(initStatements,  

                  "sourceArray[densePos]->member = accessExpression;") 

              if HasFlag(member) 

                # set validity flag to true 

                Add(initStatements, "sourceArray[densePos]->memberValid = 1;" 

              endif 

            else 

              Add(initStatements, "sourceArray[densePos] = accessExpression;") 

            endif 

          endif 

        case 4, 5 

          # It was already checked whether these can move to the init loop, 

          # no need to do it again. 

          Add(initStatements, Replace(statement, "linkedListExpression",  

                                      "linkedListExpressionCopy")) 

        case 6 

          if CanMoveToInitLoop(statement) 

            Add(initStatements, Replace(statement, "linkedListExpression",  

                                      "linkedListExpressionCopy")) 

          else 

            abort 

          endif 

        case 7 
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          if not newGuard 

            Add(initStatements, statement) 

          endif 

        case 8 

          # no action 

      endswitch 

    next 

  next 

  if not IsSemiDense(originalLoop) and newGuard 

    # end the if-statement 

    Add(initStatements, "}") 

  endif 

  # end the loop 

  Add(initStatements, "}") 

  return [ initStatements, localVariables ] 

   

function GeneratePreInitLoops(traversal, denseArrays) 

  initStatements = {} 

  localVariables = {} 

  foreach denseArray in denseArrays 

    if Contains(AccessType(denseArray), Read) 

      [ init, vars ] = GeneratePreInitLoop(traversal, denseArray) 

      if init = null 

        return null 

      endif 

      AddRange(initStatements, init) 

      # add variables eliminating duplicates (e.g. the linked list copy) 

      AddRangeUnique(localVariables, localVariables) 

    endif 

  next 

  return [ initStatements, localVariables ] 

There are a few places in this code where it can return null. Here conditions 5 and 6 from 

section 3.4.3 are checked because the code to which these conditions apply has finally been 

identified. If the conditions fail, transformation is impossible after all so it is aborted. 

3.4.6.3 Post-initialization 

Post-initialization loops will always use the original loop guard. Its goal is to walk the linked 

list precisely as the original loop did, and it will never take any action for the omitted values (fill-

in or validity checking is not relevant here), so using the new loop guard would serve no 

purpose. 

Every value that is written to in a category one or three statement will cause a statement to 

be generated in the post-initialization loop of the following form: 

original_value = array[index_expression]; 

For sublimation, index_expression is always the dense index expression indicated using a 

directive. For annihilation, an additional counter is added to the loop whose value is used here. 

Category four, five, six, seven and eight statements are treated the same way as for pre-

initialization loops. 

The matrix multiplication example does not need post-initialization when doing either 

sublimation or annihilation, but examples of post initialization have already been shown in 

section 3.2. 

This is the algorithm in pseudo code: 

function GeneratePostInitLoop(traversal, denseArray) 
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  initStatements = {} 

  localVariables = {} 

  originalLoop = GetLoop(traversal) 

  arrayType = GetType(denseArray) 

  source = GetSource(denseArray) 

  sourceType = GetType(source) 

  Add(localVariables, "arrayType *sourceArray;") 

  Add(localvariables, "sourceType linkedListExpressionCopy;") 

  Add(initStatements, "linkedListExpressionCopy = linkedListExpression;"); 

  densePos = GetDensePosition(traversal) 

  Add(initStatements, GetLoopExpression(originalLoop)); 

  Add(initStatements, "{") 

  foreach statement in FlattenStatements(originalLoop) 

    # Get the category this statement has for this source expression 

    categories = GetStatementCategories(statement, source) 

    foreach category in categories 

      switch category 

        case 1, 3 

          if GetAccessType(statement, source) = Write 

            # Get the actual expression for this access, e.g. node->Value. 

            accessExpression = GetAccessExpression(statement, source) 

            accessExpression = Replace(accessExpression, "linkedListExpression" 

                                      , "linkedListExpressionCopy") 

            if not CanMoveToInitLoop(accessExpression) 

              return null 

            endif 

            if arrayType is struct 

              member = GetMemberForAccess(statement, source) 

              Add(initStatements,  

                  "accessExpression = sourceArray[densePos]->member;") 

            else 

              Add(initStatements, "accessExpression = sourceArray[densePos];") 

            endif 

          endif 

        case 4, 5 

          # It was already checked whether these can move to the init loop, 

          # no need to do it again. 

          Add(initStatements, Replace(statement, "linkedListExpression",  

                                                 "linkedListExpressionCopy")) 

        case 6 

          if CanMoveToInitLoop(statement) 

            Add(initStatements, Replace(statement, "linkedListExpression",  

                                                   "linkedListExpressionCopy")) 

          else 

            abort 

          endif 

        case 7 

          Add(initStatements, statement) 

        case 2, 8 

          # no action 

      endswitch 

    next 

  next 

  Add(initStatements, "}") 

  return [ initStatements, localVariables ] 

   

function GeneratePostInitLoops(traversal, denseArrays) 

  initStatements = {} 

  localVariables = {} 
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  foreach denseArray in denseArrays 

    if Contains(AccessType(denseArray), Write) 

      [ init, vars ] = GeneratePostInitLoop(traversal, denseArray) 

      if init = null 

        return null 

      endif 

      AddRange(initStatements, init) 

      AddRangeUnique(localVariables, localVariables) 

    endif 

  next 

  return [ initStatements, localVariables ] 

3.4.6.4 Main loop transformation 

Now the main loop can be transformed. First, the original loop guard for this loop is replaced 

with the new loop guard. For category one, two and three statements, the values that were read 

or written are replaced with their respective array values. So any occurrence of 

linked_list_expression->data_member will be replaced with replacement_array[counter] 

for category one, any occurrence of original_counter is replaced with 

replacement_array[counter] for category two, and any occurrence of 

original_array[original_counter] is replaced with replacement_array[counter] for 

category three. 

Category four and five statements are removed completely; they deal only with the linked list 

which is no longer used in the transformed loop, so they serve no more purpose. 

Category six statements are removed if a fill-in value is known, and there are no other 

statements under this guard that would block this removal as indicated in section 3.4.4. If they 

cannot be removed, the guard expression is replaced with a check against the validity flags of all 

members used in the guarded statements. 

Category seven statements are removed; they deal with flow control of the original loop so 

they are no longer needed. 

Category eight statements are left unaltered. 

If the transformed loop was a sparse loop and validity flags are used or there are any category 

8 statements not guarded by a category 6 guard, the entire loop body is wrapped in a guard that 

checks the fill-in value or validity flag for all data members. 

This leads to the following transformed inner loop for the matrix example when using 

sublimation: 

for( x = 0; x < dimensions; ++x ) 

{ 

    result[row][col] += leftCellArray[x] * right[x][col]; 

} 

Because this was a semi-dense loop, the original and new loop statements are the same. The 

reference to leftCell->Value has been replaced with a reference to leftCellArray[x] which was 

filled in the pre-initialization loop. 

For annihilation, the transformed loop looks like this: 

for( x = 0; x < newDimensions; ++x ) 

{ 

  result[row][col] += leftCellArray[x] * rightArray[x][col]; 

} 

Here the loop guard is different: the new upper bound that was determined in the pre-

initialization loops is used instead of the original. Again, references to leftCell->Value have been 
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replaced with a reference to leftCellArray[x], and this time references to right[x] have been 

replaced with rightArray[x], which is the condensed copy of right that was created to allow for 

the changed progression of the loop counter. 

The pseudo code algorithm for this is as follows. 

function GenerateGuardExpression(dataMembers, negateDataMembers, flagsOnly) 

  newGuardExpression = "" 

  first = true 

  foreach dataMember in dataMembers 

    if first 

      first = false 

    else 

      newGuardExpression += " && " 

    endif 

    fillIn = GetFillIn(dataMember) 

    if Contains(negateDataMembers, dataMember) 

      newGuardExpression += "!(" 

    endif 

    if GetType(linkedListExpressionArray) is struct 

      if fillIn = null 

        newGuardExpression +=  

            "linkedListExpressionArray[counter]->dataMemberValid" 

      else if not flagsOnly 

        newGuardExpression +=  

            "linkedListExpressionArray[counter]->dataMember == fillIn" 

      endif 

    else if not flagsOnly 

      newGuardExpression += "linkedListExpressionArray[counter] == fillIn" 

    endif 

    if Contains(falseDataMembers, dataMember) 

      newGuardExpression += ")" 

    endif 

  endif 

  return newGuardExpression 

 

function TransformMainLoop(traversal, dataMembers, denseArrays) 

  transformedStatements = {} 

  originalLoop = GetLoop(traversal) 

  length = GetDenseLength(traversal) 

  if length = -1 

    # use computed length 

    upperbound = "linkedListDenseLength"; 

  else 

    upperbound = "length"; 

  endif 

  Add(transformedStatements,  

      "for( counter = 0; counter < upperbound; ++counter ) {" 

  if ContainsCategory7Statements(GetBody(originalLoop)) 

    # additional guard needed 

    guard = GenerateGuardExpression(dataMembers, {}, false) 

    Add(transformedStatements, "if( guard ) {") 

  endif 

  foreach statement in FlattenStatements(originalLoop) 

    # Get the category this statement has for this source expression 

    categories = GetStatementCategories(statement, source) 

    foreach category in categories 

      switch category 

        case 1, 2, 3 



 
41 

          # Get the actual expression for this access, e.g. node->Value. 

          accessExpression = GetAccessExpression(statement) 

          denseArray = GetDenseArrayFor(accessExpression, denseArrays) 

          if arrayType is struct 

            member = GetMemberForAccess(statement, accessExpression) 

            newExpression = "denseArray[counter]->member" 

          else 

            newExpression = "denseArray[counter]" 

          endif 

          Add(transformedStatements,  

              Replace(statement, accessExpression, newExpression) 

        case 4, 5, 7 

          # No action 

        case 6 

          # find data members used when the guard expression evaluates  

          # true or false. 

          trueDataMembers = DataMembersForCompound(GetTruePart(statement)) 

          falseDataMembers = DataMembersForCompound(GetFalsePart(statement)) 

          # iterate over those data members used in true or false,  

          #but not in both. 

          uniquelyGuardedMembers = (trueDataMembers union falseDataMembers –  

                                    trueDataMembers intersect falseDataMembers) 

          # If there are no cat. 7 statements guarded, only flags are  

          # needed, not fill in checks. 

          flagsOnly = Count(GetCategory7Statements(GetTruePart(statement) union  

                            GetFalsePart(statement)) = 0 

          newGuardExpression = GenerateGuardExpression(uniquelyGuardedMembers, 

                                                  falseDataMembers, flagsOnly) 

          if newGuardExpression <> "" 

            Add(transformedStatements, "if( newGuardExpression )" 

          endif 

        case 8 

          Add(transformedStatements, statement) 

      endswitch 

    next 

  next 

  if ContainsCategory7Statements(GetBody(originalLoop)) 

    # end the if statement 

    Add(transformedStatements, "}" 

  endif 

  # end the loop 

  Add(transformedStatements, "}" 

  return transformedStatements 

3.4.6.5 The transformation as a whole 

To do a complete transformation of the loop, the generation of pre-initialization and post-

initialization loops and transforming the main loop are combined leading to a set of statements 

from all three that constitute the result of the transformation. Besides just performing the 

operations from the previous three subsections, some additional steps may be necessary. If 

there is a post-initialization loop for an array that has no pre-initialization, an allocation 

statement for that array still needs to be created before the transformed main loop. If there are 

no pre-initialization loops and the dense length is unknown (for instance with annihilation), an 

empty initialization loop must be generated that determines the dense length. 

The following function is used to perform the transformation for step six. Its output is a list of 

generated variables and a list of statements containing all pre-initialization, post-initialization, 

and transformed main loop statements. 
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function TransformLoop(traversal, dataMembers, denseArrays) 

  linkedListExpression = GetLinkedListExpression(traversal) 

  localVariables = {} 

  preInitStatements = {} 

  postInitStatements = {} 

  transformedStatements = {} 

  [ preInitStatements, vars ] = GeneratePreInitLoops(traversal, denseArrays) 

  if preInitStatements = null 

    return null 

  endif 

  AddRangeUnique(localVariables, vars) 

  [ postInitStatements, vars ] = GeneratePostInitLoops(traversal, denseArrays) 

  if postInitStatements = null 

    return null 

  endif 

  AddRangeUnique(localVariables, vars) 

  length = GetDenseLength(traversal) 

  if length = -1 and preInitStatements is empty 

    # need loop to determine length 

    [ preInitStatements, vars ] = GeneratePreInitLoop(traversal, null) 

    AddRangeUnique(localVariables, vars) 

    length = "linkedListDenseLength" 

  endif 

  foreach denseArray in denseArrays 

    accessTypes = GetAccessTypes(denseArray) 

    if Contains(accessTypes, Write) and not Contains(accessTypes, Read) 

      # this means the array is used in the transformed loop and post-init 

      # loops but not the pre-init loops, so we need to allocate it seperately 

      arrayType = GetType(denseArray) 

      Add(preInitStatements, "denseArray = malloc(length * sizeof(arrayType)) 

    endif 

  next 

  # Add a statement to set the linked list variable to its final  

  # value if needed 

  if ReadAfterLoop(loop, linkedListExpression) 

    Add(postInitStatements, "linkedListExpression = listListExpressionCopy") 

  endif 

  transformedStatements = TransformMainLoop(traversal, dataMembers,  

                                           denseArrays) 

  result = preInitStatements 

  AddRange(result, transformedStatements) 

  AddRange(result, postInitStatements) 

  return [ result, localVariables ] 

3.4.7 Moving the initialization loops 

In order to further optimize the code, it can be beneficial to move the initialization loops 

away from the main loop. We can observe the following basic rules: 

1. If a block of code does not write to any of the expressions read in a pre-initialization 

loop A, and does not read any expressions written to in A, then A can be moved ahead 

of the block. Conversely, if A is a post-initialization loop is can be moved after the 

block under the same conditions. 

2. If an initialization loop A is contained in an outer loop O, and all variables read in A 

are invariant over O, then A can be moved out of O. This is called trivial loop 

extraction. 

Whenever this section mentions “initialization loop”, it means all statements such as 

assignment statements and variable copying statements associated with the actual loop as well. 
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As we saw in the previous section, a post-initialization loop for an array that has no 

corresponding pre-initialization loop will also create an additional allocation statement before 

the main array. This statement can be moved in precisely the same way as the pre-initialization 

loops. 

There are two situations where, even if the conditions for the second rule are not met, we can 

still move an initialization loop out of a containing loop. 

The first situation is when the expressions that are not root invariant all have the same root 

non-invariant expression (see section 3.4.3) is the counter of the outer loop. Consider the 

following example, which performs the algorithm from one of the examples in section 3.1 on a 

number of linked lists instead of just one. 

int product[M]; 

int x; 

for( x = 0; x < M; ++x ) 

{ 

  product[x] = 1; 

  /***DENSE_INDEX(node[x], node[x]->Index)***/ 

  /***DENSE_DIMENSION(node[x], 10)***/ 

  while( node[x] != NULL )  

  { 

    product[x] *= node[x]->Value; 

    node[x] = node[x]->Next; 

  } 

} 

In this example, node[x] is the linked list expression, leading to the following code after initial 

transformation: 

int product[M]; 

int *nodeArray; 

struct Node *nodeCopy; 

int x, y; 

for( x = 0; x < M; ++x ) 

{ 

  product[x] = 1; 

 

  // pre-initialisation 

  nodeArray = malloc(10 * sizeof(int)); 

  nodeCopy = node[x]; 

  for( y = 0; y < 10; ++y ) 

  { 

    if( nodeCopy != NULL && nodeCopy->index == x ) 

    { 

      nodeArray[y] = nodeCopy->Value; 

      nodeCopy = nodeCopy->Next; 

    } 

    else 

      nodeArray[y] = 1; // Fill-in value 

  } 

 

  // Transformed main loop 

  for( y = 0; y < 10; ++y )  

  { 

    product[y] *= nodeArray[y]; 

  } 

  node[x] = nodeCopy; 

} 
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The pre-initialization loop (which as was said earlier includes the two statements before the 

actual loop) in this sample is not invariant over the outer loop, because it uses node[x], which 

depends on x, which is not loop invariant. The root non-invariant expression for node[x] is x, and 

because x is the counter for the outer loop, we can still move the loop by duplicating the outer 

loop structure and adding a dimension to nodeArray that represents the outer loop iterations. 

This leads to the following code after moving the loop. 

int product[M]; 

int **nodeArrayArray; 

struct Node **nodeArray2; 

struct Node *nodeCopy; 

int x, y; 

// pre-initialisation 

nodeArrayArray = malloc(M * sizeof(int*)); 

nodeArray2 = malloc(M * sizeof(struct Node*)); 

for( x = 0; x < M; ++x ) 

{ 

  nodeArrayArray[x] = malloc(10 * sizeof(int)); 

  nodeCopy = node[x]; 

  for( y = 0; y < 10; ++y ) 

  { 

    if( nodeCopy != NULL && nodeCopy->index == x ) 

    { 

      nodeArrayArray[x][y] = nodeCopy->Value; 

      nodeCopy = nodeCopy->Next; 

    } 

    else 

      nodeArrayArray[x][y] = 1; // Fill-in value 

  } 

  nodeArray2[x] = nodeCopy; 

} 

 

for( x = 0; x < M; ++x ) 

{ 

  product[x] = 1; 

 

  // Transformed main loop 

  for( y = 0; y < 10; ++y )  

  { 

    product[y] *= nodeArrayArray[x][y]; 

  } 

  node[x] = nodeArray2[x]; 

} 

The procedure for this is simple: create a new loop before (or after with a post-initialization 

loop) the outer loop that uses the same loop guard as the outer loop. Add a dimension to the 

array used in the initialization loop. Move the initialization loop into the new loop, modifying all 

references to the array to include this new dimension. Then modify all references to this array in 

the transformed main loop as well. This is called simple loop extraction. 

In addition, an array is created to hold the final values of nodeCopy so that these can be 

assigned to node[x] after the transformed loop. If it can be determined that node[x] is not read 

after the loop this may be omitted. 

For a post-initialization loop, a statement must be added before the outer loop that allocates 

the array. 
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While it may seem at first a bad idea to extract the loop like this – after all, it increases the 

amount of work because it introduces an extra loop – it may lead to additional optimization 

opportunities for the main loop making it beneficial in the long run. 

The second situation in which we can still extract the loop is if the root non-invariant 

expression is itself a linked list candidate for the outer loop. In this case we can start a process 

called linked list loop extraction. 

For this process, all the previous steps are performed to transform the outer loop exactly as 

before. However, in addition to the normal creation of an array for data members, an additional 

dimension is added to the array for the initialization loop we are moving, allowing us to move 

the loop into the outer loop is initialization loop in a similar fashion as above. 

This situation occurs in the matrix multiplication example. In the previous section, we saw 

the initialization loop and transformed main loop for the innermost loop when performing 

sublimation. If we put those loops into context in the middle loop, we get the following (the 

outermost loop has been omitted): 

for( row = 0; row < dimensions; ++row ) 

{ 

  if( leftRow != NULL && leftRow->RowIndex < row ) 

    leftRow = leftRow->Next; 

 

  if( leftRow != NULL && leftRow->RowIndex == row ) 

  { 

    leftCell = leftRow->Cell; 

 

    leftCellArray = malloc(sizeof(float) * dimensions); 

    memset(leftCellArray, 0, sizeof(float) * dimensions); 

    leftCellCopy = leftCell; 

    for( x = 0; x < dimensions; ++x ) 

    { 

      if( leftCellCopy != NULL && leftCellCopy->ColIndex < x ) 

        leftCellCopy = leftCellCopy->ColNext; 

 

      if( leftCellCopy != NULL &&  

          leftCellCopy->ColIndex == x && 

          leftCellCopy->RowIndex == row ) 

      { 

        leftCellArray[x] = leftCellCopy->Value; 

      } 

    } 

 

    for( x = 0; x < dimensions; ++x ) 

    { 

      result[row][col] += leftCellArray[x] * right[x][col]; 

    } 

 

    free(leftCellArray); 

  } 

} 

Note that since leftCell is a local variable that is not read after the loops it is not necessary to 

set it to its final value after the transformed main loop. 

In this case, the initialization loop we want to move uses one value that is not invariant over 

the outer loop, namely leftCellCopy, which depends on leftCell, which depends on leftRow->Cell 

which depends on leftRow which is not invariant. The variable leftRow is a pointer to a 

RowHead structure, and step one had identified RowHead as a potential linked list candidate. 
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The algorithm will now check to see if this loop is a candidate linked list traversal for leftRow, 

checking the list returned by step two. This is indeed the case here, so we proceed with 

evaluating the conditions from step three, which are all met. Step four will identify one data 

member for this loop, namely Cell. Since data dependence analysis shows that the value of Cell is 

used only in the initialization loop, it is not necessary to create a separate array for it. Since the 

final value of leftCellCopy is also not used, no array for that is needed either. So step five does 

nothing, and the algorithm for step seven will extend leftCellArray with an extra dimension. Step 

six will perform transformation as usual, and afterwards the initialization loop for leftCell will be 

moved into a new initialization loop created for leftRow, adjusting it accordingly. Since there are 

no data members for leftRow outside of the leftCell initialization loop, the fill-in value for leftCell 

is assumed to apply here, which means the second if-statement in the loop (which is category 

six) can be removed from the transformed loop. Creation and initialization of the array for 

leftCell is done outside that if-statement in the leftRow initialization loop because it also needs 

to be done for the fill-in case. Note that if direct initialization of the fill-in value using memset as 

is done here is not possible, an else-clause must be added to this if-statement that fills the array 

with fill-in values. 

This leads to the following code after transformation: 

leftCellArrayArray = malloc(sizeof(float*) * dimensions); 

 

leftRowCopy = leftRow; 

for( row = 0; row < dimensions; ++row ) 

{ 

  if( leftRowCopy != NULL && leftRowCopy->RowIndex < row ) 

    leftRowCopy = leftRowCopy->Next; 

 

  leftCellArrayArray[row] = malloc(sizeof(float) * dimensions); 

  memset(leftCellArrayArray[row], 0, sizeof(float) * dimensions); 

 

  if( leftRowCopy != NULL && leftRowCopy->RowIndex == row ) 

  { 

    leftCell = leftRowCopy->Cell; 

 

    leftCellCopy = leftCell; 

    for( x = 0; x < dimensions; ++x ) 

    { 

      if( leftCellCopy != NULL && leftCellCopy->ColIndex < x ) 

        leftCellCopy = leftCellCopy->ColNext; 

 

      if( leftCellCopy != NULL &&  

          leftCellCopy->ColIndex == x && 

          leftCellCopy->RowIndex == row ) 

      { 

        leftCellArrayArray[row][x] = leftCellCopy->Value; 

      } 

    } 

  } 

} 

 

for( row = 0; row < dimensions; ++row ) 

{ 

  for( x = 0; x < dimensions; ++x ) 

  { 

    result[row][col] += leftCellArrayArray[row][x] * right[x][col]; 

  } 
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} 

 

// Cleanup 

for( row = 0; row < dimensions; ++row ) 

  free(leftCellArrayArray[row]); 

free(leftCellArrayArray); 

In this case it is immediately clear what the benefit of doing this is: although we have 

increased the overhead of initialization by adding an extra loop, the transformed loop now looks 

like a normal, dense matrix multiplication algorithm which allows further optimizations. 

Note that when doing annihilation we can perform this step using annihilation as well in 

exactly the same manner as described in the previous sections. 

To complete the transformation of the matrix multiplication example with sublimation, we 

also want to move this leftRow initialization loop out of the outermost loop. Since it is 

completely invariant, it can be moved out of the loop using trivial loop extraction. Note that the 

cleanup code will be moved out of the loop as well. This leads to the code in Appendix A. There 

you can also find the completely transformed code when using annihilation. 

Step seven can be represented using the following pseudo code. 

function GetLoopIterationCount(loop) 

  loopControlStatements = GetLoopControlStatements(loop, null) 

  # returns -1 if there is no directive 

  length = GetLengthFromDirective(loop) 

  if length = -1 

    # these are the conditions under which the upper bound can be determined  

    # and thus the needed array size 

    if Count(loopControlStatements) = 1 and  

       loopControlStatements[0] like "x = x + 1" and  

       GetLoopCondition(loop) like "x < upperBound" 

      length = upperBound 

    endif 

  endif 

  return length 

 

function AddDimension(declaration, length) 

  type = GetType(declaration) 

  name = GetName(declaration) 

  newDeclaration = "type *nameArray;" 

  allocation = "nameArray = malloc(length * sizeof(type*));" 

  return [ newDeclaration, allocation ] 

   

# Loop extraction for when the non-invariant value is the counter. 

# As mentioned, initLoop includes the malloc statement for the loop, 

# and can also be just a malloc statement. 

function DoSimpleLoopExtraction(outerLoop, initLoops, localVariables) 

  preInitStatements = {} 

  postInitStatements = {} 

  transformedStatements = {} 

  if IsLoopControlTrivial(outerLoop) 

    length = GetLoopIterationCount(outerLoop) 

    if length = -1 

      name = GenerateUniqueName() 

      # add a pre-init loop to count the length 

      Add(localVariables, "int nameArrayLength;") 

      Add(preInitStatements, "nameArrayLength = 0;") 

      Add(preInitStatements, GetLoopGuard(outerLoop)) 

      Add(preInitStatements, "{ ++nameArrayLength; ") 
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      AddRange(preInitStatements, loopControlStatements) 

      Add(preInitStatements, "}") 

      length = "nameArrayLength" 

    endif 

    foreach initLoop in initLoops 

      RemoveStatements(outerLoop, initLoop) 

      # get the control variable from the outer loop that the init loop is  

      # using 

      controlVariable = GetDependantControlVariable(initLoop) 

      # get the declaration statement for the array used by this init loop 

      initVariables = GetInitVariables(initLoop) 

      newNames = {} 

      foreach variable in initVariables 

        declaration = GetDeclaration(localVariables, variable) 

        # check if the declaration is already processed for this loop; this 

        # can happen e.g. if an pre- and post-init loop share an array. 

        if not DeclarationIsAlreadyProcessed(declaration, outerLoop) 

          # the original declaration in localVariables is replaced 

          [ declaration, allocation ] = AddDimension(declaration, length) 

          Add(preInitStatements, allocation) 

        endif 

        Add(newNames, GetName(arrayDeclaration)) 

      Endif 

      if IsPostInit(initLoop) 

        initStatements = postInitStatements 

      else 

        initStatements = preInitStatements 

      endif 

      Add(initStatements, GetLoopGuard(outerLoop)) 

      # swap in the array for all statements of the init loop 

      foreach name in newNames 

        originalName = name – "Array" 

        initLoop = Replace(initLoop, originalName, "name[controlVariable]") 

        outerLoop = Replace(outerLoop, originalName, "name[controlVariable]") 

      endif 

      Add(initStatements, initLoop) 

      Add(initStatements, "}") 

      # remove the init loop statements from the outer loop 

      RemoveRange(outerLoop, initLoop) 

    next 

    result = preInitStatements 

    AddRange(result, outerLoop) 

    AddRange(result, postInitStatements) 

    return result 

  else 

    return null 

  endif 

 

# generates an init loop for the traversal in outerloop placing the 

# specified statements in the loop at their proper relative position 

# or at the end if they are new statements. InitStatements typically 

# is an init loop that is being extracted which means these statements 

# are not actually in outerLoop anymore since they were removed earlier. 

function GenerateExtractedLoop(outerLoop, initLoop, length, newArrayNames) 

  result = {} 

  Add(result, GetLoopGuard(outerLoop)) 

  traversal = GetTraversal(outerLoop) 

  densePos = GetDenseIndex(traversal) 

  allocation = GetAllocationStatements(initLoop) 
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  AddRange(result, allocation) 

  # Generate the memset statement or the loop needed to set 

  # the entire array to the fill-in value. This is needed because 

  # the init loop we are moving might be guarded so cannot be guaranteed 

  # to take care of the fill-in for us. 

  GenerateFillInStatements(result, initLoop)   

  foreach statement in FlattenStatements(GetBody(outerLoop)) 

    # only loop control and linked list iteration statements are needed 

    switch GetCategoryForLoopExtraction(statement, initLoop) 

      # cat 1 is the init loop statements to be moved, with the exclusion  

      # of statements to allocate and fill-in initialisation of the array,  

      # the rest is the same as for regular init loop generation 

      case 1, 4, 5, 7 

        Add(result, statement) 

    endswitch 

  next 

  return result 

 

# outerLoop is completely original and untransformed 

# transformedOuterLoop is the outer loop after regular linked list  

# transformation; the init loops have already been removed. It is passed 

# to this function so the new array names can be swapped in. 

function DoLinkedListLoopExtraction(outerLoop, initLoops, localVariables,  

                                   transformedLoop) 

  preInitStatements = {} 

  postInitStatements = {} 

  length = GetLoopIterationCount(outerLoop) 

  if length = -1 

    name = GenerateUniqueName() 

    # add a pre-init loop to count the length 

    Add(localVariables, "int nameArrayLength;") 

    Add(preInitStatements, "nameArrayLength = 0;") 

    initStatements = { "++nameArrayLength;" ) 

    # create empty loop purely for the counter 

    loop = GenerateExtractedLoop(outerLoop, initStatements, -1, null) 

    Add(preInitStatements, loop) 

    length = "nameArrayLength" 

  endif 

  foreach initLoop in initLoops 

    # get the variables that this loop is initialising 

    initVariables = GetInitVariables(initLoop) 

    newNames = {} 

    foreach variable in initVariables 

      declaration = GetDeclaration(localVariables, variable) 

      # check if the declaration is already processed for this loop; this 

      # can happen e.g. if an pre- and post-init loop share an array. 

      if not DeclarationIsAlreadyProcessed(declaration, outerLoop) 

        [ arrayDeclaration, allocation ] = AddDimension(declaration, length) 

        Add(preInitStatements, allocation) 

      endif 

      Add(newNames, GetName(arrayDeclaration)) 

    endif 

    if IsPostInit(initLoop) 

      initStatements = postInitStatements 

    else 

      initStatements = preInitStatements 

    endif 

    traversal = GetTraversal(outerLoop) 

    densePos = GetDenseIndex(traversal) 
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    foreach newArrayName in newNames 

      originalName = newArrayName - "Array" 

      initLoop = Replace(initLoop, originalName, "newArrayName[densePos]") 

      # update the transformed loop as well 

      transformedOuterLoop = Replace(transformedOuterLoop, originalName,  

                                     "newArrayName[densePos]") 

    next 

    loop = GenerateExtractedLoop(outerLoop, initLoop, length, newNames) 

    AddRange(initStatements, loop) 

  next 

  return [ preInitStatements, postInitStatements ] 

     

function ExtractInitLoops(outerLoop, candidateTraversals, localVariables) 

  # get all pre- and post-init loops and associated code 

  # in the loop 

  initLoops = GetInitLoops(outerLoop) 

  candidateTraversal = null 

  loopExtractionCandidates = {} 

  simpleExtractionCandidates = {} 

  trivialExtractionCandidates = {} 

  # unmoveableLoops is used only for simple extractions; a loop that ends up  

  # in this collection because it uses more than one control variable might  

  # still be moveable by linked list loop extraction. 

  unmoveableLoops = {} 

  foreach initLoop in initLoops 

    # get the variables that this init loop is initialising 

    initVariables = GetInitVariables(initLoop) 

    nonInvariantVariableCount = 0 

    foreach variable in initLoop 

      if not (Contains(initVariables) or IsLoopInvariant(outerLoop, variable)) 

        nonInvariantVariableCount += 1 

        rootExpression = GetRootNonInvariantExpression(variable) 

        # see if the outerloop has a candidate traversal for the type of this 

        # variable, the member and statement do not matter 

        traversal = GetItem(candidateTraversals,  

                           [ outerLoop, [ GetType(rootExpression), * ], * ]) 

        # the outer loop may have more than one traversal; we consider only 

        # one. 

        if traversal <> null and candidateTraversal = null or 

           traversal = candidateTraversal 

          traversal = candidateTraversal 

          Add(loopExtractionCandidates, initLoop) 

        else 

          if not Contains(unmoveableLoops, initLoop) 

            foreach controlVariable in GetLoopCondition(outerLoop) 

              if rootExpression = controlVariable 

                if Contains(simpleExtractionCandidates, [ initLoop, * ]) 

                  # simpe extraction is impossible, linked list loop extraction 

                  # may still be possible 

                  Add(unmoveableLoops, initLoop) 

                  Remove(simpleExtractionCandidates, initLoop) 

                else 

                  Add(simpleExtractionCandidates, [initLoop, controlVariable]) 

                endif 

              else 

                # loop extraction is guaranteed impossible 

                Add(unmoveableLoops, initLoop) 

                Remove(simpleExtractionCandidates, initLoop) 

                Remove(loopExtractionCandidates, initLoop) 
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              endif 

          next 

      endif 

    next 

    if nonInvariantVariableCount = 0 

      Add(trivialExtractionCandidates, initLoop) 

    endif 

  next 

  # now all init loops that can do simple loop extraction or linked list loop 

  # extraction are known. Only one type of extraction is performed, then true 

  # is returned so that the caller knows changes were made and it can 

  # check the loop again 

  if Count(loopExtractionCandidates) > 0 

    return TransformTraversal(candidateTraversal, loopExtractionCandidates,  

  else if Count(simpleLoopExtractionCandidates) > 0 

    outerLoop = DoSimpleLoopExtraction(outerLoop,  

                                      simpleLoopExtractionCandidates,  

                                      localVariables) 

    return true 

  else if Count(trivialLoopExtractionCandidates) > 0 

    return DoTrivialLoopExtraction(outerLoop, trivialLoopExtractionCandidates) 

  endif 

  return false 

For simplicity, the code for trivial loop extraction and loop movement (when the first 

condition from the beginning of this section is met) is not provided, since these cases are both 

trivial to implement. 

The main function for this step is ExtractInitLoops. It finds all init loops that can be extracted 

using linked list loop extraction, simple loop extraction or trivial loop extraction. It will then 

perform one of those transformations, on all applicable initialization loops, and return. The 

caller can use the return value to determine if changes were made. If so, ExtractInitLoops can be 

called again to analyze the modified situation and see if more loops can be extracted using 

perhaps a different technique. 

Linked list loop extraction is done by calling on the main transformation since it is a linked 

list transformation just like we have done before only with some extra steps. This main 

transformation function is given in the next section, which includes some of the code for this 

step. 

3.4.8 Putting it all together 

In the previous sections, pseudo code is given for the individual steps, defining functions that 

perform the steps and return the results given by that step. What is left then is a function that 

calls these functions in the correct order so it performs the entire transformation. This is given 

below. 

function TransformTranslationUnit(translationUnit) 

  candidateStructs = FindCandidateStructs(translationUnit) 

  foreach function in translationUnit 

    do 

      candidateTraversals = FindCandidateTraversals(function, candidateStructs) 

      # get the candidate with the highest nesting level 

      if Count(candidateTraversals) > 0 

        candidateTraversal = GetMostNestedCandidate(candidateTraversals) 

        if not TransformTraversal(candidateTraversal) 

          # transformation was unsuccessful, make sure not to try it again 

          MarkProcessed(candidateTraversal) 
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        endif 

      endif 

    loop while Count(candidateTraversals) > 0 

    # do the simple movement for loops matching the first condition 

    # for init loop movement. 

    foreach initLoop in function 

      MoveInitLoop(function, initLoop) 

    next 

  next 

   

function TransformTraversal(traversal, initLoopsToMove, candidateTraversals) 

  if EvaluateCandidateTraversal(traversal) 

    loop = GetLoop(traversal); 

    dataMembers = FindDataMembers(traversal) 

    foreach dataMember in dataMembers 

      # remove those data members that are only used in the init loops 

      # we are going to be moving by linked list loop extraction. 

      if DataMemberOnlyUsedInInitLoops(dataMember, initLoopsToMove) 

        Remove(dataMembers, dataMember) 

      endif 

    next 

    if Count(dataMembers) = 0 and Count(initLoopsToMove) = 0 

      # nothing to do 

      return false 

    endif 

    denseArrays = GenerateDenseDataStructures(traversal, dataMembers) 

    function = GetFunction(traversal) 

    [ result, vars ] = TransformLoop(traversal, dataMembers, denseArrays) 

    if result = null 

      return false 

    endif 

    AddDeclarations(function, vars) 

    # perform linked list loop extraction 

    if initLoopsToMove <> null 

      [ pre, post ] = DoLinkedListLoopExtraction(loop, initLoopsToMove,  

                                            GetDeclarations(function), result) 

    endif 

    transformed = Concat(pre, result, post) 

    ReplaceStatements(function, loop, transformed) 

    # See if the loop was contained inside another loop 

    do 

      madeChanges = false 

      outerLoop = GetContainingLoop(loop) 

      if outerLoop <> null 

        localVariables = GetDeclarations(function) 

        madeChanges = ExtractInitLoops(outerLoop, candidateTraversals,  

                                      localVariables) 

      endif 

    loop while madeChanges 

    return true 

  endif 

  return false 

TransformTranslationUnit is the main function driving the transformation of a single 

translation unit (a pre-processed C code file). It will find the candidate traversals using steps one 

and two, and then call TransformTraversal which performs the remaining steps. Step seven, as 

was noted in the previous section, can recursively call TransformTraversal to perform linked list 

loop extraction on a containing loop. 
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As a final step some cleanup can be performed on the code. The transformation can leave 

statements in the code that have no effect anymore after transformation; these can be found 

using data dependence analysis and be safely removed. 

3.5 Normalization 

As indicated earlier, before any of the transformation steps above take place, the code needs 

to be normalized so that it can be reliably transformed and analyzed. Normalization consists of 

several parts which are covered in the following sections. Since the separate normalization 

techniques can affect other techniques it may be necessary to repeat normalization until no 

further changes occur in the code. 

Most of the examples in this thesis have not had full normalization applied to ease readability. 

3.5.1 Aliasing 

When trying to do any kind of analysis of C code, pointer aliasing forms a major obstacle in 

reasoning about it. Pointer analysis has been the subject of intense study in the past decades, 

and there are a great number of different approaches. These approaches can be categorized by 

flow-sensitivity and context-sensitivity. A flow-insensitive algorithm ignores the order of 

statements when it calculates pointer information, whereas a flow-sensitive algorithm takes 

control flow within a procedure into account. A context-insensitive algorithm does not 

distinguish the different calling contexts of a procedure, whereas a context-sensitive does. Hind 

and Pioli do a comparative analysis of several pointer analysis methods in [9], and Hind 

examines some of the remaining problems in [10]. An introduction to possible applications of 

pointer analysis is given in [5]. 

Especially context-sensitive pointer analysis, which is required to solve the global aliasing 

problem, can be extremely time-consuming and generally grow exponentially with the size of 

the program, a problem which is compounded in the presence of function pointers [11]. In [12; 

13] Zhu and Calman give an approach that can efficiently do a whole program pointer analysis. 

Although global aliasing is an extremely hard problem, how to deal with aliasing when it 

involves only the scope of a single function is relatively straight-forward and the normalization 

step can take some steps to easy data dependence analysis, which are outlined below. 

A variable is an alias for another variable if modifications of either the original or the alias 

would affect the other. This means that an alias must necessarily always be a pointer (except 

when pointers are cast to numerical values). Aliases can be created when a pointer to an existing 

variable is assigned to a variable, or when an existing pointer is copied to a new variable. By 

looking for assignments of a variable that has a pointer type we can be recognize where aliases 

are created. In the case of using a higher level of indirection, e.g. x = &y, any change in y will 

affect x and any change in x where x is dereferenced at least once will affect y. In the case of the 

same level of indirection, e.g. x = y, any change in either x or y where they are dereferenced 

affects the other. 

In either case, we will normalize all uses of x and the aliased value &y or just y to use the 

identical expression, up to the point where x itself (not dereferenced) is modified again. For the 

same level of indirection, a change in y will also break the aliasing and thus be the end of the 

replacements, except if y is changed to a value that also depends on y (for instance, y = y + 1), we 

should try to re-express x in the new value of y. 

A special case is the situation where a variable is assigned the result of a pointer 

manipulation, e.g. x = y + 5 if x and y are both pointers. Although you are not directly aliasing 

y, there is a case of aliasing here because it is now possible to access the memory location y+5 in 
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two ways. In other words, x has become equivalent to saying y+5. Therefore, we will also 

normalize these occurrences. In this case, if y is modified, the same rules apply as above, so we 

must try to re-express the value if the new value of y depends on y, or break the relationship if it 

is changed independently. 

The left-hand side of the assignment need not be a variable, but can be any l-value that has a 

suitable pointer type. For instance in the situation that *x = &y, we must consider *x an alias for 

y, and treat it as such. In this case, changing x as well as *x will break the relation. 

In C it is unfortunately possible to cast a pointer to an integer, and then later back to a 

pointer, possibly after manipulating it. If such a cast occurs, we cannot safely determine aliases 

and must assume safety if we are in a SAFE_CODE region. 

As can be clearly seen, aliasing is a very complex problem, and solving it in its entirety is 

beyond the scope of this thesis, especially considering that if you want to prove that the 

transformation is safe, you must also prove that no corner cases exist in which a potentially 

unsafe alias is undetected and left in the code. To this end we will always assume that any code 

marked safe using directives simply does not use any unsafe aliasing to begin with, and if it does 

transformation would either fail or lead to semantically incorrect results. 

Nevertheless, in the future it will be worthwhile to investigate how this transformation can 

be improved by applying some of the more powerful pointer analysis methods. Some of the 

transformation steps, such as locating the linked list iteration statement in Section 3.4.2, which 

are expressed in terms of syntax in this thesis, can possibly be expressed in terms of pointer 

dependencies. Additionally, context-sensitive pointer analysis can allow us to actually verify 

some of the conditions for SAFE_CODE regions, and would also allow us to deal with function 

calls more effectively. 

3.5.2 Loop structure normalization 

In order to make processing loops simpler, for-loops will be transformed into while-loops. A 

for loop has the following structure: 

for( initialisation; condition; loop-expression ) 

{ 

  /* … */ 

} 

This can be transformed to a while-loop with the following structure: 

initialisation; 

while( condition ) 

{ 

  /* … */ 

  loop-expression; 

} 

Again it must be noted that this has not been done in the examples in this thesis for 

readability. 

Do-loops and existing while-loops will be left unchanged. 

3.5.3 Expression normalization 

As indicated in sections 3.4.2 and 3.4.3, it is important to be able to consider semantic 

equivalence of expressions in order to correctly determine whether values are used in a safe 

way. By normalizing expressions used in the code, equivalent expressions take the same form so 

they can be more easily detected. 
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The following is a list of normalizing steps that could be taken (note that this list is probably 

not exhaustive): 

• Remove any unnecessary parentheses, e.g. (x) becomes x if the parenthesis do not 

affect evaluation order. 

• Pre-compute the value of any constant expressions, e.g. 5+7 becomes 12. The values of 

constant identifiers (variables declared as const) will be substituted as well. 

• Remove any zero-effect operations. This includes unnecessary 

referencing/dereferencing (e.g. &*x becomes x), addition of zero (e.g. x+0 becomes x), 

multiplication or division by one (e.g. x*1 and x/1 become x) 

• Transform left and right bit-shift operations into multiplications and divisions 

respectively, e.g. x<<1 becomes x*2. 

• Pointer arithmetic followed by dereferencing is transformed into array indexing, e.g. 

*(pointer + x) becomes pointer[x]. 

• Distribute any distributive operators. 

• Normalize the operand order of commutative operators. For array indexing, we make 

sure the pointer variable comes first (e.g. x[pointer] becomes pointer[x]) and for 

all other commutative operators we sort the operands alphabetically, e.g. y+x 

becomes x+y. 

• Expand shorthand operators, e.g. ++x becomes x = x+1, and x *= 2 becomes x = x * 

2. The special case for x++ can be solved by introducing temporaries. 

• Extract operations with side effects into separate statements, e.g. if( (x=x+1) > y ) 

becomes x=x+1; if( x > y ) 

• Etc. 

The steps in this list are repeated until no more changes are possible. 

There are some more esoteric expressions that are actually equivalent that cannot be reliably 

detected.  You can, for instance, access a struct member using pointer arithmetic. We must once 

again assume that this is not done in sections marked as safe. 

Some of these modifications can have performance implications (for instance swapping shift 

operations with multiplications). In that case the original form can be stored and put back in 

after the transformation has completed. 

3.6 Transformation directives 

In several of the preceding sections we have made mention of transformation directives, and 

we have also seen some examples of them. 

Transformation directives serve to fill in the gaps where the transformation cannot discover 

the required information automatically by analyzing the code. Because the directives often apply 

to only a small section of the code they must be part of the source code itself, and cannot be 

replaced with e.g. command-line parameters for the compiler. A hypothetical implementation of 

this transformation will look for these directives in the source and use them accordingly. 

Unlike some programming languages (such as C#), C does not have built-in support for 

attributes or directives. Instead, we will use specially formatted comments to represent them. 

Comments are well suited to this because they do not interfere with the ability of a regular 

compiler to process the code. Alternative approaches such as #pragma directives might clash 

with those used by another compiler and may require conditional compilation to ensure cross-

platform functioning; comments do not have these drawbacks.  

A transformation directive will be any text between /*** and ***/. The directive is case-

sensitive, and any white space within the directive comment is insignificant, unless it is within a 
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string literal that serves as an argument for the directive. If the text between those delimiters 

cannot be understood as a directive, it must be assumed it is a normal comment and be ignored. 

Below is a list of some of the directives that would be used by our transformation. This is not 

meant to be a complete list. 

SAFE_CODE 

By default, the transformation assumes all code is unsafe to transform unless 

explicitly marked safe. All code following this directive is considered to be safe, until 

an UNSAFE_CODE directive is encountered. Code between a SAFE_CODE and 

UNSAFE_CODE directive is called a safe code section. A safe code section is assumed 

not to violate any of the rules that cannot be automatically checked; it is still checked 

for violations of the other rules. 

UNSAFE_CODE 

This directive indicates that all code following this directive is unsafe, until a 

SAFE_CODE directive is encountered. Code between a SAFE_CODE and 

UNSAFE_CODE directive is called a safe code section. 

SAFE_LOOP 

This indicates that the loop directly following the directive may be transformed, 

even if it is not in a safe code section. If the loop contains nested loops, they are not 

considered safe as well. 

UNSAFE_LOOP 

This indicates that the loop directly following the directive may not be transformed, 

even if it is in a safe code section. This directive does not affect loops nested in the 

loop it applies to. 

DENSE_INDEX(linked_list_expression, index_expression) 

This applies to the loop directly following it and the indicated linked_list_expression. 

It indicates that index_expression can be used inside the loop body to retrieve the 

original dense index. Both parameters can be any valid C expression. 

DENSE_DIMENSIONS(linked_list_expression, dimension_expression) 

This directive applies to the loop directly following it and the indicated 

linked_list_expressions. It indicates that dimension_expression can be used to 

determine the dimensions of the original dense data. 

FILL_IN(linked_list_expression[, fill_in_value]) 

This directive applies to the loop directly following it and the indicated 

linked_list_expressions.  It indicates the fill-in value to use for those values that have 

been omitted when generating the dense data structure. If the fill_in_value 

parameter is omitted, the transformation assumes there is no fill in value and must 

use a separate validity check. If this directive is not present, the transformation will 

attempt to determine a fill in value by itself. 

 

In all cases, it is up to the programmer to ensure that the information specified by the 

directives is actually true. Although a section of code that is marked safe is still subject to the 
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checks indicated in section 3.4, the transformation will make no effort to verify whether things 

such as aliasing or pointer arithmetic are not present or safe if they are present. Similarly, the 

transformation will make no effort to determine if the index expression actually returns the 

index, if it is safe to be used as such (e.g. if it has side-effects) or even if it has the right type. Nor 

will it do this for the fill in value, or anything else. If the programmer chooses to lie to the 

compiler with these directives, transformation will succeed but likely yield incorrect results. 

4 Experimentation 

In the previous section, we have described the linked list transformation process, and applied 

it to the matrix multiplication example from section 2. Appendix A contains the complete result 

of that transformation for both sublimation and annihilation. Here, all possible traversals have 

been transformed and the initialization loops have been moved as much as possible. This has left 

us with a very clean main loop that looks exactly like a normal dense matrix multiplication. 

As indicated in the introduction, we will evaluate the results of this transformation by 

generating new, optimized sparse code using some sample matrices from the Harwell Boeing 

collection. 

The sparse compiler MT1 will be used to generate this new sparse code. This will be done for 

the sublimation results only; the resulting data structures of the annihilation process are no 

longer sparse so there is little MT1 could do with it, and the array structures do not lend 

themselves to translation to FORTRAN. 

Almost everything in this section is specific to the use of matrices. The linked list 

transformation algorithm itself is not limited to matrices, but can be used on any linked list 

structure. 

4.1 Translation into FORTRAN 

The next thing to do is translate the code into FORTRAN so it can be transformed into sparse 

code again by the MT1 compiler. 

Of course, not all C code can be easily translated into FORTRAN. For this translation to work 

there may be no more pointers (besides those that are actually arrays) left in the code that must 

be translated, and no structures. Some of this can be worked around; structures can be split into 

separate variables and arrays of structures into separate arrays. 

Fortunately, the transformed main loop of the matrix multiplication sample contains no 

pointers and no structures, so it can be transformed without issue. 

Translation into FORTRAN is done using an automated process. This C to FORTRAN 

conversion program was developed for this research, and can handle only a very limited subset 

of C; it can handle exactly those parts of C that are used in the loops that need to be translated. 

In order to feed this translation process, the transformed main loop is extracted into a 

separate function, and some additional directives are added. For the loop that results from 

sublimation, this looks like this: 

/***ARRAY_BOUNDS(result,dimensions,dimensions)***/ 

/***ARRAY_BOUNDS(leftCellArrayArray,dimensions,dimensions)***/ 

/***ARRAY_BOUNDS(right,dimensions,dimensions)***/ 

void Mult(int dimensions, float **result, float **leftCellArrayArray,  

          float **right) 

{ 

4  int col; 

  int row; 
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  int x; 

 

  for( col = 0; col < dimensions; ++col ) 

  { 

    for( row = 0; row < dimensions; ++row ) 

    { 

      for( x = 0; x < dimensions; ++x ) 

      { 

        result[row][col] = result[row][col] +  

                           leftCellArrayArray[row][x] * right[x][col]; 

      } 

    } 

  } 

} 

The directives used here are not listed in the previous section because they are not part of the 

linked list transformation process, but belong to the C to FORTRAN translation specifically. The 

ARRAY_BOUNDS directive specifies that a certain pointer variable is in fact an array, and 

specifies the expression to use for the size of each of its dimensions. 

The resulting FORTRAN code looks like this: 

      subroutine Mult(dimensions, result, leftCellArrayArray, right) 

      integer dimensions 

      real result(dimensions,dimensions) 

      real leftCellArrayArray(dimensions,dimensions) 

      real right(dimensions,dimensions) 

      integer col 

      integer row 

      integer x 

      do col = 1, dimensions 

        do row = 1, dimensions 

          do x = 1, dimensions 

            result(row,col) = result(row,col) + 

     +      leftCellArrayArray(row,x) * right(x,col) 

          end do 

        end do 

      end do 

      end 

It is worth noting that the original loops in the C code ran from 0 to dimensions-1, while these 

loops run from 1 to dimensions. Because FORTRAN arrays are one-based (whereas C arrays are 

zero-based) and the row, col and x variables are used only in an array index expression, this is 

safe. 

The code above is not precisely the code we will use. We will in fact use a slight variation of 

the algorithm. So far, we have assumed both matrices are square and of the same size. Because 

the right hand side and result matrices are not sparse need to be stored in memory completely 

this becomes prohibitive for large matrices. Instead, the algorithm we will use multiplies the 

sparse matrix with one that is tall and narrow. This does not change much for the algorithm; all 

that needs to be changed is the upper bound for the “col” loop, everything else remains the same. 

4.2 Using the sparse compiler 

The subroutine above cannot be input in MT1 as-is. A program declaration must be added as 

well as annotations that instruct MT1 about the sparse matrices used in the program. As 

indicated in [2], there are multiple types of directives that can be used to indicate the non-zero 
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structure of the matrix used. We will be using the automatic non-zero structure analysis by using 

file annotations as described in section 4.2 of [2]. 

We assume here that the used matrix or at least one with identical structure is available at 

compile time.  

After performing the transformation, we will modify the initialization loop for the extended 

data structure leftCellArrayArray to explicitly generate the matrix file in the coordinate system 

format used by the sparse compiler. 

FILE *file = fopen(“matrix.cs”, “r”); 

for( row = 0; row < dimensions; ++row ) 

{ 

  if( leftRowCopy != NULL && leftRowCopy->RowIndex < row ) 

    leftRowCopy = leftRowCopy->Next; 

 

  if( leftRowCopy != NULL && leftRowCopy->RowIndex == row ) 

  { 

    leftCell = leftRowCopy->Cell; 

 

    leftCellCopy = leftCell; 

    for( x = 0; x < dimensions; ++x ) 

    { 

      if( leftCellCopy != NULL && leftCellCopy->ColIndex < x ) 

        leftCellCopy = leftCellCopy->ColNext; 

 

      if( leftCellCopy != NULL &&  

          leftCellCopy->ColIndex == x ) 

      { 

        fprintf(file, “%i %i %f\n”, row, x, leftCellCopy->Value); 

      } 

    } 

  } 

} 

This loop is then executed at compile time, after which it can be removed from the 

transformed code. Now the matrix file has been generated, we can generate a program to 

complete the FORTRAN code: 

      program main 

      integer N 

      parameter (N=5005) 

      real left(N,N) 

C_SPARSE(ARRAY(left), FILE('matrix.cs')) 

      real right(N,N) 

      real result(N,N) 

      call Mult(N, result, left, right) 

      end 

This code is run through MT1. Appendix C shows the result of this transformation. 

Although we will not run the annihilation code through MT1 in this case we can still do some 

optimizations, and if the entire transformation is implemented for C these could easily be done 

automatically. Because of the simple structure of the transformed loop, we can easily use 

techniques such as loop interchange to optimize memory access patterns and enable 

vectorization. The restructured loop looks like this: 

for( row = 0; row < newRowDimensions; ++row ) 

{ 

  for( x = 0; x < newDimensionsArray[row]; ++x ) 
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  { 

 array = rightArrayArray[row][x]; 

    for( col = 0; col < dimensions; ++col ) 

    { 

      tempResult[row][col] += leftCellArrayArray[row][x] * array[col]; 

    } 

  } 

} 

The array variable was introduced to simplify the index expression in the main loop; without 

it the expression was deemed too complex to vectorize by the compiler. 

4.3 Compilation 

To ensure a fair comparison between the original linked list code and the code generated by 

MT1, the latter is transformed back into C using the f2c utility. At this point, a few manual 

modifications must be made. The C�FORTRAN�C conversion has caused our two-dimensional 

arrays, which were originally “array-of-arrays” style, to be changed into FORTRAN-style column-

major order strided arrays. We must manually change this back to use jagged arrays, and correct 

the indexing order so that optimal memory access efficiency is obtained. If we can eventually 

implement the entire process for C, these manual corrections will not be necessary. 

The final resulting C code is integrated with the test harness which loads all the necessary 

matrices and also measures the time taken. This code is then compiled using the Intel C++ 

Compiler for Windows 9.1, using the /O3 /QxN /Qipo compiler options. These options tell the 

compiler to use maximum optimization and to target the Pentium 4 enabling it to use the MMX, 

SSE and SSE2 vector instructions. 

Because the inefficiencies and complex expressions introduced by the f2c transformation 

make it very difficult to effectively optimize the resulting C code (a problem which would not 

exist if the entire sparse matrix transformation is done with C in mind) we will also include the 

FORTRAN code in the results. This has been compiled with the Intel Visual FORTRAN Compiler 

for Windows 9.1, using the same compiler options as used with the C compiler. 

4.4 Results 

The steps above were performed for a number of matrices from the Harwell Boeing 

collection, of varying size and density. The results of each algorithm were timed on a system 

using an Intel Xeon 3.06GHz CPU. In each case, the right hand side matrix was 1000 columns 

wide. 

 

sherman3 e40r5000 af23560 

Size 5005x5005 17281x17281 23560x23560 

Non-zero elements 20033 553965 484256 

Density 0.080% 0.186% 0.087% 

Results (seconds) 

   Original algorithm 22.813 s 266.404 s 443.982 s 

Alternative algorithm 2.138 s 46.108 s 29.940 s 

Annihilation 0.195 s 1.742 s 2.744 s 

MT1 (Fortran) 0.095 s 5.228 s 2.216 s 

MT1 (C) 0.124 s 5.153 s 3.314 s 

 

It can be seen that the original algorithm is, as expected, quite inefficient. It always executes 

the full number of iterations, regardless of how dense the matrix actually is. The alternative 



 

linked list algorithm presented in appendix B does much better at exploiting the sparseness of 

the matrix. 

The C versions of the MT1 algorithms are outperformed by their FORTRAN equivalents, 

mainly because of the optimization

vectorize far more of the loops; in fact, the C compiler most often can 

Figure 3 shows the speed increases relative to the original linked list algorithm, where higher 

is better. 
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linked list algorithm presented in appendix B does much better at exploiting the sparseness of 

The C versions of the MT1 algorithms are outperformed by their FORTRAN equivalents, 

optimization difficulties noted above. The FORTRAN compiler is able to 

far more of the loops; in fact, the C compiler most often can vectorize

shows the speed increases relative to the original linked list algorithm, where higher 

Relative speed increase 

The odd one out is obviously e40r5000, as it is the only one where annihilation performs 

better than MT1. The reason is that this matrix is not recognized by MT1 as having a diagonal 

structure, but instead a band structure. In this case, MT1 uses a single array to store the non

s and uses index arrays to locate them. The multiplication still accesses the matrix in 

row order, but only the indices containing non-zero values are used. This is extremely like what 

annihilation does, but annihilation does it without indirection in the inner loop, and with a more 

efficient nesting order of the loops, allowing better vectorization and improved memory access 

patterns. The C and FORTRAN versions of the MT1 algorithm for this matrix are very close 

together owing to the fact that vectorization is not as efficient here. 

The absolute times for the af23560 matrix are actually lower for most of the algorithms than 

they were for the smaller e40r5000 matrix. This is because af23560 has much lower density; it 

has a lower total number of non-zero elements than e40r5000. The original algorithm, which 

exploit the sparsity, is still much slower, and, perhaps surprisingly, 

would appear that annihilation performs better with a relatively denser matrix, whereas the 

linked list algorithm and MT1 perform better with a less dense matrix.

which has nearly all its values on the main diagonal, is clearly best suited to the transformations 

It is interesting to note that the annihilation code was generated from the original, inefficient 

algorithm. Even without using MT1, with just a few simple loop interchanges, and with the 

initialization loops included, we have succeeded in transforming a very 

e40r5000 af23560

Alternative algorithm

Annihilation

MT1 (fortran)

MT1 (C)
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linked list algorithm presented in appendix B does much better at exploiting the sparseness of 

The C versions of the MT1 algorithms are outperformed by their FORTRAN equivalents, 

difficulties noted above. The FORTRAN compiler is able to 

vectorize none of them. 

shows the speed increases relative to the original linked list algorithm, where higher 

 

the only one where annihilation performs 

by MT1 as having a diagonal 

structure, but instead a band structure. In this case, MT1 uses a single array to store the non-

s and uses index arrays to locate them. The multiplication still accesses the matrix in 

zero values are used. This is extremely like what 

inner loop, and with a more 

and improved memory access 

patterns. The C and FORTRAN versions of the MT1 algorithm for this matrix are very close 

The absolute times for the af23560 matrix are actually lower for most of the algorithms than 

they were for the smaller e40r5000 matrix. This is because af23560 has much lower density; it 

ents than e40r5000. The original algorithm, which 

 so is annihilation. It 

matrix, whereas the 

linked list algorithm and MT1 perform better with a less dense matrix. Sherman3, 

which has nearly all its values on the main diagonal, is clearly best suited to the transformations 

It is interesting to note that the annihilation code was generated from the original, inefficient 

algorithm. Even without using MT1, with just a few simple loop interchanges, and with the 

transforming a very 

Alternative algorithm

Annihilation

MT1 (fortran)

MT1 (C)
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inefficient algorithm into one that outperforms an optimal linked list algorithm and in a few 

cases even the sparse code generated by MT1. 
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Appendix A. Transformed matrix multiplication code. 

Sublimation: 

int MatrixMultiplyTransformed(Matrix left, float** right, int rightDimensions, 

                             float **result, int resultDimensions) 

{ 

  RowHead *leftRow = left.Row; 

  Cell *leftCell; 

  int dimensions = left.Dimensions; 

  int col; 

  int row; 

  int x; 

 

  float **leftCellArrayArray; 

  Cell *leftCellCopy; 

  RowHead *leftRowCopy; 

 

  if( !(left.Dimensions == rightDimensions &&  

      left.Dimensions == resultDimensions) ) 

    return -1; 

 

  leftRow = left.Row; 

 

  leftCellArrayArray = malloc(sizeof(float*) * dimensions); 

 

  leftRowCopy = leftRow; 

  for( row = 0; row < dimensions; ++row ) 

  { 

    if( leftRowCopy != NULL && leftRowCopy->RowIndex < row ) 

      leftRowCopy = leftRowCopy->Next; 

 

    leftCellArrayArray[row] = malloc(sizeof(float) * dimensions); 

    memset(leftCellArrayArray[row], 0, sizeof(float) * dimensions); 

 

    if( leftRowCopy != NULL && leftRowCopy->RowIndex == row ) 

    { 

      leftCell = leftRowCopy->Cell; 

 

      leftCellCopy = leftCell; 

      for( x = 0; x < dimensions; ++x ) 

      { 

        if( leftCellCopy != NULL && leftCellCopy->ColIndex < x ) 

          leftCellCopy = leftCellCopy->ColNext; 

 

        if( leftCellCopy != NULL &&  

            leftCellCopy->ColIndex == x && 

            leftCellCopy->RowIndex == row ) 

        { 

          leftCellArrayArray[row][x] = leftCellCopy->Value; 

        } 

      } 

    } 

  } 

 

  // Main loop 

  for( col = 0; col < dimensions; ++col ) 

  { 

    for( row = 0; row < dimensions; ++row ) 

    { 
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      for( x = 0; x < dimensions; ++x ) 

      { 

        result[row][col] += leftCellArrayArray[row][x] * right[x][col]; 

      } 

    } 

  } 

 

  // Cleanup 

  for( row = 0; row < dimensions; ++row ) 

    free(leftCellArrayArray[row]); 

  free(leftCellArrayArray); 

 

  return 0; 

} 

Annihilation: 

int MatrixMultiplyAnnihilation(Matrix left, float **right, int rightDimensions, 

                              float **result, int resultDimensions) 

{ 

  RowHead *leftRow = left.Row; 

  Cell *leftCell; 

  int dimensions = left.Dimensions; 

  int col; 

  int row; 

  int x; 

 

  float **leftCellArrayArray; 

  int leftCellArraySize; 

  float ***rightArrayArray; 

  int rightArraySize; 

  int *newDimensionsArray; 

  int newRowDimensions; 

  float **resultArray; 

  Cell *leftCellCopy; 

  RowHead *leftRowCopy; 

  float *test; 

  int leftCellArrayArraySize; 

  int rightArrayArraySize; 

  int resultArraySize; 

 

  if( !(left.Dimensions == rightDimensions &&  

      left.Dimensions == resultDimensions) ) 

    return -1; 

 

  // Initialisation 

  newRowDimensions = 0; 

  leftCellArrayArraySize = 100; 

  leftCellArrayArray = malloc(sizeof(float*) * leftCellArrayArraySize); 

  newDimensionsArray = malloc(sizeof(int) * leftCellArrayArraySize); 

  leftRowCopy = leftRow; 

  for( row = 0; row < dimensions; ++row ) 

  { 

    if( newRowDimensions >= leftCellArrayArraySize ) 

    { 

      leftCellArrayArraySize *= 2; 

      leftCellArrayArray = realloc(leftCellArrayArray,  

                                   sizeof(float*) * leftCellArrayArraySize); 

      newDimensionsArray = realloc(leftCellArrayArray,  
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                                   sizeof(int) * newDimensionsArray); 

    } 

    if( leftRowCopy != NULL && leftRowCopy->RowIndex < row ) 

      leftRowCopy = leftRowCopy->Next; 

 

    if( leftRowCopy != NULL && leftRowCopy->RowIndex == row ) 

    { 

      leftCell = leftRowCopy->Cell; 

 

      leftCellArraySize = 100; 

      leftCellArrayArray[newRowDimensions] = malloc(sizeof(float) *  

                                                   leftCellArraySize); 

      newDimensionsArray[newRowDimensions] = 0; 

      leftCellCopy = leftCell; 

      // Initialisation loop 

      for( x = 0; x < dimensions; ++x ) 

      { 

        if( newDimensionsArray[newRowDimensions] >= leftCellArraySize ) 

        { 

          leftCellArraySize *= 2; 

          leftCellArrayArray[newRowDimensions] =  

                             realloc(leftCellArrayArray[newRowDimensions],  

                                     sizeof(float) * leftCellArraySize); 

        } 

        if( leftCellCopy != NULL && leftCellCopy->ColIndex < x ) 

          leftCellCopy = leftCellCopy->ColNext; 

 

        if( leftCellCopy != NULL &&  

            leftCellCopy->ColIndex == x && 

            leftCellCopy->RowIndex == row ) 

        { 

leftCellArrayArray[newRowDimensions][newDimensionsArray[newRowDimensions]] = 

leftCellCopy->Value; 

          ++newDimensionsArray[newRowDimensions]; 

        } 

      } 

      ++newRowDimensions; 

    } 

  } 

   

 

  newRowDimensions = 0; 

  rightArrayArraySize = 100; 

  rightArrayArray = malloc(sizeof(float**) * rightArrayArraySize); 

  leftRowCopy = leftRow; 

  for( row = 0; row < dimensions; ++row ) 

  { 

    if( newRowDimensions >= leftCellArrayArraySize ) 

    { 

      rightArrayArraySize *= 2; 

      rightArrayArray = realloc(rightArrayArray,  

                                sizeof(float*) * rightArrayArraySize); 

    } 

    if( leftRowCopy != NULL && leftRowCopy->RowIndex < row ) 

      leftRowCopy = leftRowCopy->Next; 

 

    if( leftRowCopy != NULL && leftRowCopy->RowIndex == row ) 

    { 

      leftCell = leftRowCopy->Cell; 
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      rightArraySize = 100; 

      rightArrayArray[newRowDimensions] = malloc(sizeof(float*) * 

rightArraySize); 

      newDimensionsArray[newRowDimensions] = 0; 

      leftCellCopy = leftCell; 

      // Initialisation loop 

      for( x = 0; x < dimensions; ++x ) 

      { 

        if( newDimensionsArray[newRowDimensions] >= rightArraySize ) 

        { 

          leftCellArraySize *= 2; 

          rightArrayArray[newRowDimensions] =  

                                  realloc(rightArrayArray[newRowDimensions],  

                                         sizeof(float*) * rightArraySize); 

        } 

        if( leftCellCopy != NULL && leftCellCopy->ColIndex < x ) 

          leftCellCopy = leftCellCopy->ColNext; 

 

        if( leftCellCopy != NULL &&  

            leftCellCopy->ColIndex == x && 

            leftCellCopy->RowIndex == row ) 

        { 

rightArrayArray[newRowDimensions][newDimensionsArray[newRowDimensions]] = 

right[x]; 

          ++newDimensionsArray[newRowDimensions]; 

        } 

      } 

      ++newRowDimensions; 

    } 

  } 

 

  leftRowCopy = leftRow; 

  // Create temp result array 

  resultArraySize = 100; 

  resultArray = malloc(sizeof(float*) * resultArraySize); 

  // Initial values are read, so we need another initialisation loop 

  newRowDimensions = 0; 

  for( row = 0; row < dimensions; ++row ) 

  { 

    if( newRowDimensions >= leftCellArrayArraySize ) 

    { 

      resultArraySize *= 2; 

      resultArray = realloc(resultArray,  

                                sizeof(float*) * resultArraySize); 

    } 

    if( leftRowCopy != NULL && leftRowCopy->RowIndex < row ) 

      leftRowCopy = leftRowCopy->Next; 

 

    if( leftRowCopy != NULL && leftRowCopy->RowIndex == row ) 

    { 

      resultArray[newRowDimensions] = result[row]; 

      ++newRowDimensions; 

    } 

  } 

 

 

  for( col = 0; col < cols; ++col ) 

  { 
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    for( row = 0; row < newRowDimensions; ++row ) 

    { 

      for( x = 0; x < newDimensionsArray[row]; ++x ) 

      { 

        tempResult[row][col] += leftCellArrayArray[row][x] *  

                                rightArrayArray[row][x][col]; 

      } 

    } 

  } 

 

  // cleanup 

  free(tempResult); 

  for( row = 0; row < newRowDimensions; ++row ) 

  { 

    free(leftCellArrayArray[row]); 

    free(rightArrayArray[row]); 

  } 

  free(leftCellArrayArray); 

  free(rightArrayArray); 

  free(newDimensionsArray); 

 

  return 0; 

}  
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Appendix B.  Alternative matrix multiplication algorithm 

int MatrixMultiply(Matrix left, float **right, int rightDimensions,  

                  float **result, int resultDimensions) 

{ 

  RowHead *leftRow = left.Row; 

  Cell *leftCell; 

  int dimensions = left.Dimensions; 

  int col; 

 

  if( !(left.Dimensions == rightDimensions &&  

      left.Dimensions == resultDimensions) ) 

    return -1; 

 

  for( col = 0; col < dimensions; ++col ) 

  { 

    leftRow = left.Row; 

 

    while( leftRow != NULL ) 

    { 

      leftCell = leftRow->Cell; 

      while( leftCell != NULL ) 

      { 

        result[leftCell->RowIndex][col] += leftCell->Value *  

                                           right[leftCell->ColIndex][col]; 

        leftCell = leftCell->ColNext; 

      } 

      leftRow = leftRow->Next; 

    } 

  } 

 

  return 0; 

} 

Transformed using sublimation: 

int MatrixMultiplyTransformed(Matrix left, float **right, int rightDimensions,  

                             float **result, int resultDimensions) 

{ 

  RowHead *leftRow = left.Row; 

  Cell *leftCell; 

  int dimensions = left.Dimensions; 

  int col; 

  int leftRowCounter; 

  int leftCellCounter; 

 

  float **leftCellArrayArray; 

 

  if( !(left.Dimensions == rightDimensions &&  

        left.Dimensions == resultDimensions) ) 

    return -1; 

 

  leftRow = left.Row; 

 

  leftCellArrayArray = malloc(dimensions * sizeof(float*)); 

  /* bulk initialisation not possible so use new loop guard */ 

  for( leftRowCounter = 0; leftRowCounter < dimensions; ++leftRowCounter ) 

  { 

    leftCellArrayArray[leftRowCounter] = malloc(dimensions * sizeof(float)); 
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    memset(leftCellArrayArray[leftRowCounter], 0, dimensions * sizeof(float)); 

 

    if( leftRow != NULL && leftRowCounter == leftRow->RowIndex ) 

    { 

      leftCell = leftRow->Cell; 

      while( leftCell != NULL ) 

      { 

        leftCellArrayArray[leftRowCounter][leftCell->ColIndex] =  

                                                            leftCell->Value; 

        leftCell = leftCell->ColNext; 

      } 

      leftRow = leftRow->Next; 

    } 

  } 

 

  for( col = 0; col < dimensions; ++col ) 

  { 

    for( leftRowCounter = 0; leftRowCounter < dimensions; ++leftRowCounter ) 

    { 

      for( leftCellCounter = 0; leftCellCounter < dimensions; ++leftCellCounter 

) 

      { 

        result[leftRowCounter][col] += 

leftCellArray[leftRowCounter][leftCellCounter] * right[leftCellCounter][col]; 

      } 

    } 

  } 

 

  for( leftRowCounter = 0; leftRowCounter < dimensions; ++leftRowCounter ) 

  { 

    free(leftCellArrayArray[leftRowCounter]); 

  } 

  free(leftCellArrayArray); 

 

  return 0; 

} 

Transformed using annihilation: 

int MatrixMultiplyAnnihilation(Matrix left, float **right, int rightDimensions, 

                              float **result, int resultDimensions) 

{ 

  RowHead *leftRow = left.Row; 

  Cell *leftCell; 

  int dimensions = left.Dimensions; 

  int col; 

 

  float **leftCellArrayArray; 

  float ***rightArrayArray; 

  Cell *leftCellCopy; 

  int *newDimensionsArray; 

  int newRowDimensions; 

  int leftRowCounter; 

  int leftCellCounter; 

  RowHead *leftRowCopy; 

  float **resultArray; 

 

  if( !(left.Dimensions == rightDimensions &&  

      left.Dimensions == resultDimensions) ) 
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    return -1; 

 

  leftRow = left.Row; 

 

  leftCellArrayArray = malloc(dimensions * sizeof(float*)); 

  leftRowCopy = leftRow; 

  newRowDimensions = 0; 

  while( leftRowCopy != NULL ) 

  { 

    leftCell = leftRowCopy->Cell; 

 

    leftCellArrayArray[newRowDimensions] = malloc(dimensions * sizeof(float)); 

    newDimensionsArray[newRowDimensions] = 0; 

    leftCellCopy = leftCell; 

    while( leftCellCopy != NULL ) 

    { 

leftCellArrayArray[newRowDimensions][newDimensionsArray[newRowDimensions]] = 

leftCellCopy->Value; 

      leftCellCopy = leftCellCopy->ColNext; 

      ++newDimensionsArray[newRowDimensions]; 

    } 

    leftRow = leftRow->Next; 

    ++newRowDimensions; 

  } 

 

  rightArrayArray = malloc(dimensions * sizeof(float**)); 

  leftRowCopy = leftRow; 

  newRowDimensions = 0; 

  while( leftRowCopy != NULL ) 

  { 

    leftCell = leftRowCopy->Cell; 

 

    rightArrayArray[newRowDimensions] = malloc(dimensions * sizeof(float*)); 

    newDimensionsArray[newRowDimensions] = 0; 

    leftCellCopy = leftCell; 

    while( leftCellCopy != NULL ) 

    { 

      rightArrayArray[newRowDimensions][newDimensionsArray[newRowDimensions]] =  

      right[leftCellCopy->ColIndex]; 

      leftCellCopy = leftCellCopy->ColNext; 

      ++newDimensionsArray[newRowDimensions]; 

    } 

    leftRow = leftRow->Next; 

    ++newRowDimensions; 

  } 

 

  resultArray = malloc(dimensions * sizeof(float*)); 

  leftRowCopy = leftRow; 

  newRowDimensions = 0; 

  while( leftRowCopy != NULL ) 

  { 

    resultArray[newRowDimensions] = result[leftRow->RowIndex]; 

    leftRow = leftRow->Next; 

    ++newRowDimensions; 

  } 

 

  for( col = 0; col < dimensions; ++col ) 

  { 

    for( leftRowCounter = 0; leftRowCounter < newRowDimensions;  
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         ++leftRowCounter ) 

    { 

      for( leftCellCounter = 0; leftCellCounter <  

            newDimensionsArray[newRowDimensions]; ++leftCellCounter ) 

      { 

        resultArray[leftRowCounter][col] +=  

           leftCellArrayArray[leftRowCounter][leftCellCounter] *  

           rightArrayArray[leftRowCounter][leftCellCounter][col]; 

      } 

    } 

  } 

 

  return 0; 

} 
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Appendix C.  Optimized matrix multiplication 

      PROGRAM MAIN 

      REAL RIGHT(5005,1000),RESULT(5005,1000) 

      INTEGER I_,J_,M_,N_,NNZ_,K_ 

      REAL V_ 

      INTEGER TMP__(1) 

      REAL DN1_LEFT,DN2_LEFT,DN3_LEFT,DN4_LEFT,DN5_LEFT 

      COMMON /LEFT___/DN1_LEFT(386:5005),DN2_LEFT(4620),DN3_LEFT( 

     +36:5005),DN4_LEFT(4970),DN5_LEFT(5005,(-1):1) 

 

      OPEN (1,FILE='matrix.mtx',STATUS='OLD')  

      READ (1,*) M_,N_,NNZ_ 

      IF ((M_.NE.5005).OR.(N_.NE.5005)) STOP 'Incorrect size' 

      DO K_ = 1, NNZ_, 1 

        READ (1,*) I_,J_,V_ 

        IF (((I_-J_).EQ.(-385)).AND.((387.LE.(I_+J_)).AND.(((I_+J_).LE. 

     +  9625).AND.((386.LE.J_).AND.(I_.LE.4620))))) THEN 

          DN1_LEFT(J_) = V_ 

        ELSE IF ((I_-J_).EQ.385) THEN 

          DN2_LEFT(J_) = V_ 

        ELSE IF (((I_-J_).EQ.(-35)).AND.((37.LE.(I_+J_)).AND.(((I_+J_) 

     +    .LE.9975).AND.((36.LE.J_).AND.(I_.LE.4970))))) THEN 

          DN3_LEFT(J_) = V_ 

        ELSE IF ((I_-J_).EQ.35) THEN 

          DN4_LEFT(J_) = V_ 

        ELSE IF (((-1).LE.(I_-J_)).AND.((I_-J_).LE.1)) THEN 

          DN5_LEFT(J_,I_-J_) = V_ 

        ELSE IF (((-34).LE.(I_-J_)).AND.((I_-J_).LE.(-2))) THEN 

          STOP 'Entry occurs in zero region' 

        ELSE IF ((2.LE.(I_-J_)).AND.((I_-J_).LE.34)) THEN 

          STOP 'Entry occurs in zero region' 

        ELSE IF (((-384).LE.(I_-J_)).AND.((I_-J_).LE.(-36))) THEN 

          STOP 'Entry occurs in zero region' 

        ELSE IF ((36.LE.(I_-J_)).AND.((I_-J_).LE.384)) THEN 

          STOP 'Entry occurs in zero region' 

        ELSE IF ((I_-J_).LE.(-386)) THEN 

          STOP 'Entry occurs in zero region' 

        ELSE IF (386.LE.(I_-J_)) THEN 

          STOP 'Entry occurs in zero region' 

        END IF 

      ENDDO 

      CLOSE (1)  

      CALL MULT_000LEFT0(5005,1000,RESULT,RIGHT) 

      STOP  

 

      END 

 

      SUBROUTINE MULT_000LEFT0(DIM,WIDTH,RESULT,RIGHT) 

      INTEGER DIM,WIDTH 

      REAL RESULT(5005,1000) 

      REAL RIGHT(5005,1000) 

      INTEGER ROW,COL,X 

      REAL DN2_LEFT,DN1_LEFT,DN3_LEFT,DN4_LEFT,DN5_LEFT 

      COMMON /LEFT___/DN1_LEFT(386:5005),DN2_LEFT(4620),DN3_LEFT( 

     +36:5005),DN4_LEFT(4970),DN5_LEFT(5005,(-1):1) 

 

      DO ROW = 1, 1000, 1 

        DO X = 1, 4620, 1 
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          RESULT(X+385,ROW) = RESULT(X+385,ROW)+(DN2_LEFT(X)*RIGHT(X,ROW 

     +    )) 

        ENDDO 

        DO X = 1, 4970, 1 

          RESULT(X+35,ROW) = RESULT(X+35,ROW)+(DN4_LEFT(X)*RIGHT(X,ROW)) 

        ENDDO 

        DO COL = -1, 1, 1 

          DO X = MAX0(1,COL+1), MIN0(5005,COL+5005), 1 

            RESULT(-COL+X,ROW) = RESULT(-COL+X,ROW)+(DN5_LEFT(X,-COL)* 

     +      RIGHT(X,ROW)) 

          ENDDO 

        ENDDO 

        DO X = 36, 5005, 1 

          RESULT(X-35,ROW) = RESULT(X-35,ROW)+(DN3_LEFT(X)*RIGHT(X,ROW)) 

        ENDDO 

        DO X = 386, 5005, 1 

          RESULT(X-385,ROW) = RESULT(X-385,ROW)+(DN1_LEFT(X)*RIGHT(X,ROW 

     +    )) 

        ENDDO 

      ENDDO 

      RETURN  

 

      END 

 

      BLOCK DATA    

      REAL DN1_LEFT,DN2_LEFT,DN3_LEFT,DN4_LEFT,DN5_LEFT 

      COMMON /LEFT___/DN1_LEFT(386:5005),DN2_LEFT(4620),DN3_LEFT( 

     +36:5005),DN4_LEFT(4970),DN5_LEFT(5005,(-1):1) 

 

      DATA DN1_LEFT /4620*0./ 

      DATA DN2_LEFT /4620*0./ 

      DATA DN3_LEFT /4970*0./ 

      DATA DN4_LEFT /4970*0./ 

      DATA DN5_LEFT /15015*0./ 

 

      END 


