

Leiden University

Sparse code optimization
Automatic transformation of linked list pointer structures

Sven Groot

2006-10-31

2

Contents

1 Introduction ... 3

2 Example code: sparse matrix multiplication .. 4

3 Linked list transformation ... 6

3.1 Sublimation vs. Annihilation ... 7

3.2 Pre- and post-initialization .. 9

3.3 Two types of loops .. 11

3.4 Linked list transformation algorithm ... 12

3.4.1 Finding linked list structure candidates .. 13

3.4.2 Analyzing candidate structure usage .. 14

3.4.3 Transformation evaluation ... 15

3.4.4 Find data members ... 22

3.4.5 Generate dense data structures .. 26

3.4.6 Generate initialization loop and transform main loop .. 31

3.4.7 Moving the initialization loops .. 42

3.4.8 Putting it all together ... 51

3.5 Normalization ... 53

3.5.1 Aliasing .. 53

3.5.2 Loop structure normalization .. 54

3.5.3 Expression normalization .. 54

3.6 Transformation directives .. 55

4 Experimentation ... 57

4.1 Translation into FORTRAN ... 57

4.2 Using the sparse compiler ... 58

4.3 Compilation ... 60

4.4 Results ... 60

Bibliography .. 63

Appendix A. Transformed matrix multiplication code. .. 65

Appendix B. Alternative matrix multiplication algorithm ... 70

Appendix C. Optimized matrix multiplication .. 74

3

1 Introduction

One of the major problems in the area of restructuring compilers is that of optimizing sparse

code. Preferably we wish to be able to automatically select a sparse structure that is best suited

to the input matrices. The MT1 compiler, developed at Leiden University [1; 2], is a compiler that

can take dense code and automatically generate sparse code suited to the non-zero structure of

the sparse matrices used in the code.

In order to be able to transform it, the code used as input to such a compiler may usually not

use indirections, and such is the case with MT1. The compiler needs to do deep data dependency

and zero-structure analysis of the data structures used in the code, and if these structures are

accessed irregularly it is often not possible to draw any meaningful conclusions from this

analysis, thus prohibiting the transformation of the code. This presents a problem when the code

one wishes to optimize is already using a sparse representation, since this code will use

indirection.

While there exist approaches to automatically restructure irregular code into regular (dense)

code [3], these are meant for languages such as FORTRAN, where indirect addressing is done by

using index arrays; for example a certain array might be accessed directly using A(n) or

indirectly using A(B(n)). Here B serves as an index into A, and the access pattern of A is

governed by B. The irregular code transformation presented in [3] is applicable only to these

types of irregular code.

In languages such as C, irregularity is typically created by the use of pointers. For this and

other reasons, optimizing C code is incredibly complex. Pointers do not only allow irregular

access, but they can point to arbitrary locations, multiple pointers can point to the same location

(aliasing), they can be arbitrarily manipulated, and they allow more complicated structures such

as a linked list or tree, all of which present considerable challenges. Some of the challenges

involved in optimizing C code are outlined in chapter 12 of [4].

One very common pointer structure is the linked list. The linked list provides significant

optimization challenges even outside the realm of sparse matrix computation. Linked lists

represent a sequence of elements where each element is in a completely unrelated location,

making it difficult for the compiler to optimize the memory access patterns and the CPU cache

cannot use locality to speed up access to the list. It is also impossible to vectorize computations

that involve them. Additionally, the presence of the linked list in a loop, which means the use of

pointers, will often prevent simple automatic transformations such as loop interchange which

can help to optimize the code.

In this thesis, we have devised a method whereby a linked list, created using pointers and

used to represent sparse data, can be automatically transformed into code operating on dense

data structures. The linked list will have been replaced by a regularly accessed array, allowing

further optimization.

To evaluate the possibilities of further optimization and sparse data structure selection, we

will use the sparse compiler MT1 to transform the generated dense code into sparse code

optimized for a certain matrix structure. Because MT1 can only operate on FORTRAN code, and

not on C code, we automatically transform our C code into FORTRAN. This transformation

imposes some requirements on the used C code so it is not generally applicable, but it suffices

for the code we need to transform here. The performance of the different versions will then be

measured and compared.

The techniques presented here are generic; they can be applied to any C code using linked

lists as long as it meets the requirements stated later. Even when the linked list was not used to

4

represent sparse matrices the transformation can yield some benefits by enabling optimizations

such as vectorization on the generated code.

The approach used here is quite unique. For the past few decades, the major focus of pointer

optimization research has been in the area of dependence analysis in the presence of pointers,

something which will be covered further in Section 3.5.1. Although around a hundred papers

and theses have been written on pointer analysis, surprisingly little research exists on the

application of these techniques. What little work does exist tends to focus on more conventional

optimization techniques such as common sub-expression elimination, loop-invariant

elimination, etc. [5], on parallelization [6; 7] or on optimizing memory access and allocation [8].

No research in the area of sparse computations involving pointers or even vectorization of code

involving pointers (other than pointers to arrays) could be found.

Instead of focusing on pointer dependence analysis, this thesis focuses on a specific pointer

usage pattern and attempts to enable more complex optimizations, for example loop interchange

and data structure transformation, such as those done by sparse compilers, an approach that

appears to be unprecedented.

2 Example code: sparse matrix multiplication

In order to illustrate the techniques used for linked list transformation, we will use an

example of a sparse matrix computation. In this example, the sparse matrix is represented using

a linked list. The data structure for a sparse matrix consists of two linked lists of column and row

headers. Each header item contains a linked list for the column or row respectively. The type

definitions used by this representation are given below.

struct Cell

{

 float Value;

 int ColIndex;

 int RowIndex;

 struct Cell *RowNext; // Cell in the next row

 struct Cell *ColNext; // Cell in the next column

};

struct RowHead

{

 int RowIndex;

 struct Cell *Cell;

 struct RowHead *Next;

};

struct ColHead

{

 int ColIndex;

 struct Cell *Cell;

 struct ColHead *Next;

};

struct Matrix

{

 int Dimensions;

 struct ColHead *Col;

 struct RowHead *Row;

};

5

As you can see the row and column linked lists both use the same type to represent the cells.

Indeed, every instance of the Cell structure will be part of the linked list for both its row and its

column.

To allow sparseness, cells which have a zero value will be omitted from the linked lists. This

means the RowIndex and ColIndex can skip values if a Cell has been omitted. Similarly, if a row

or column consists entirely of zeros, the header may be omitted as well. This representation can

be easily constructed reading the matrix from a file that uses either a dense or sparse notation.

Figure 1 shows an example of how a 3x3 sparse matrix would be represented in this format.

For demonstration purposes, we use the following matrix multiplication algorithm which

uses this representation for one of the matrices involved; the others use a traditional multi-

dimensional array representation that is fully dense, i.e. all values are stored, even zeroes:

int MatrixMultiply(Matrix left, float** right, int rightDimensions,

 float **result, int resultDimensions)

{

 struct RowHead *leftRow = left.Row;

 struct Cell *leftCell;

 int dimensions = left.Dimensions;

 int col;

 int row;

 int x;

 if(!(left.Dimensions == rightDimensions &&

 left.Dimensions == resultDimensions))

 return -1;

 for(col = 0; col < dimensions; ++col)

 {

 leftRow = left.Row;

 for(row = 0; row < dimensions; ++row)

 {

 if(leftRow != NULL && leftRow->RowIndex < row)

 leftRow = leftRow->Next;

Matrix
ColHead

Index=1
Col ColHead

Index=2
Next ColHead

Index=3
Next

RowHead

Index=1

Row

RowHead

Index=3

Next

Cell
Cell

Cell

Cell
ColNext

Cell

Cell
Cell

Cell

Cell ColNext

RowNext

�1 0 10 0 00 1 1�

Figure 1 A sparse matrix using linked list representation.

6

 if(leftRow != NULL && leftRow->RowIndex == row)

 {

 leftCell = leftRow->Cell;

 for(x = 0; x < dimensions; ++x)

 {

 if(leftCell != NULL && leftCell->ColIndex < x)

 leftCell = leftCell->ColNext;

 if(leftCell != NULL &&

 leftCell->ColIndex == x &&

 leftCell->RowIndex == row)

 {

 result[row][col] += leftCell->Value * right[x][col];

 }

 }

 }

 }

 }

 return 0;

}

There are a few things to note about this algorithm. The result and right matrices both use an

“array-of-arrays” representation instead of a typical multi-dimensional array as used in C, which

would be strided. This is to allow for dynamic allocation of the arrays. Because these are

pointers, they present all the problems listed in [4]. For the purposes of our transformation, we

must assume that these pointers point to distinct arrays. If they were to overlap, reads of “right”

are dependent on writes of “result”, which breaks data dependence analysis. This is one the

aliasing problems which is mentioned in section 3.5.1 and it cannot be completely solved here.

Transformation directives will be used to indicate which sections of the code do not violate such

restrictions and are therefore safe to transform.

Another thing to note is that since the left matrix is walked in row order only, the ColHead

linked list is not used. This does not matter to the algorithm, and indeed if it were used (as

would be the case if right was sparse as well) the linked list transformation would be executed in

exactly the same way.

Finally, you should note that the loop used to walk the linked list is not typical for linked list

code. Usually you see linked list loops that use a condition such as while(node != NULL). This

matrix multiplication code uses what we call a semi-dense loop; this is elaborated on in Section

3.3. It is indeed possible to write matrix multiplication using the more common type of linked

list code, and it would in fact be a great deal faster for matrices with low density. The choice of

initial code however does not affect the algorithm; this version however is chosen in particular

because it demonstrates more aspects of the transformation. Appendix B shows the alternative

version of the algorithm along with results of transforming it.

3 Linked list transformation

In this section, we will cover the method used for linked list transformation. We will provide

a set of automatic transformations that a compiler could execute to transform irregular sparse

code, which uses linked list pointers, into regular dense code. The transformation will attempt to

move all linked list style pointer accesses from the main loop being transformed into separate

initialization loops, removing the linked list from the main loop leaving a linearly accessed array

in its place in the main loop.

7

Currently, no real implementation of the system exists. It is however described using steps

which can be performed automatically and is also presented in a pseudo code implementation.

Although the transformed code examples were done by hand, all could be done automatically. It

should be noted that the examples are not fully normalized as described in section 3.5;

normalization is necessary for automatic processing, but some of it has been omitted in favor of

keeping the examples readable.

3.1 Sublimation vs. Annihilation

The goal of the transformation is, in essence, to regularize the linked list into an array. There

are two basic techniques by which we can do this, sublimation and annihilation.

With sublimation, we transform a sparse linked list into a dense array by filling in all the

omitted values with a suitable fill-in value, e.g. zero or one; which value exactly will depend on

the source data (for details on how the value to use is determined, see section 3.4.5).

With annihilation, the linked list is still transformed into an array, but leaving it sparse. The

only values in the array will be the values that were in the linked list; values that were omitted in

the linked list will still be omitted in the array, so no fill-in value is needed. If the code being

transformed uses any other data structures apart from the linked list, such as a dense array, it

may be necessary to transform those as well so that they match the transformed array.

Let us illustrate this with an example. Assume you have a vector of ten values, which looks

like this:�1, 1, 3, 1, 1, 7, 2, 1, 9, 1�. In this case, we are only interested in the values that have a

value other than one, so only four values are relevant. These are stored in a sparse linked list,

which omits the values that are one; this means the linked list will contain four nodes. Besides

the value, each node also contains a member which indicates the original index that value had in

the vector. The (zero-based) indices of the relevant values are 2, 5, 6 and 8.

Figure 2 shows the structure of this linked list. We now look at a simple reduce algorithm that

operates on this linked list:

int product = 1;

/***DENSE_INDEX(node, node->Index)***/

/***DENSE_DIMENSION(node, 10)***/

while(node != NULL)

{

 product *= node->Value;

 node = node->Next;

}

Besides the simple algorithm, this code snippet also contains two transformation directives,

one which tells it how to determine the dense index for a node in the linked list, and one that

tells it the original dense size of the vector (note that this does not need to be a constant, any

expression will do). Directives influencing the translation are covered in more detail in section

3.6.

When translating the linked list using sublimation, the goal is to create an array that contains

ten elements, i.e. all of the original elements in a dense representation. An initialization loop is

Value: 3

Index: 2

Value: 7

Index: 5

Value: 2

Index: 6

Value: 9

Index: 8
NULL

Figure 2 A simple linked list representing a sparse array

8

generated to copy the linked list contents into such an array, and the main loop is transformed to

use the dense array instead of the linked list. The fill-in value we will use is one, since that was

the omitted value, and it can be shown that using that value will not cause the semantics of the

algorithm to change, since multiplying by one does nothing (since this thesis deals mainly with

sparse matrices, the fill-in value will nearly always be zero; this example was designed

specifically to show that it does not need to be; the techniques presented can deal with any fill-in

value).

int product = 1;

int x;

// Initialisation

int *nodeArray = malloc(10 * sizeof(int));

for(x = 0; x < 10; ++x)

{

 if(node != NULL && node->index == x)

 {

 nodeArray[x] = node->Value;

 node = node->Next;

 }

 else

 nodeArray[x] = 1; // Fill-in value

}

// Main loop, transformed

for(x = 0; x < 10; ++x)

{

 product *= nodeArray[x];

}

free(nodeArray);

As you can see, new loop bounds have been determined using the dimensions of the dense

array which were specified with the transformation directive. Both the initialization loop and

the transformed main loop use this loop bound. The initialization loop uses a check against the

dense index to see whether it should copy the value from the linked list or use the fill-in value

(note that this is not the only way the initialization loop can be created in this case, more on that

in section 3.4.6). The transformed main loop loops over the entire dense array, and uses the

values from the array instead of the linked list. The linked list is not present in the main loop at

all anymore.

After the initialization loop, nodeArray looks exactly like the original vector: �1, 1, 3, 1, 1, 7, 2, 1, 9, 1�
As you can see, it has ten elements, like the original dense data, and contains the used values

at their proper indices. All the other values are one, the fill-in value.

Now let us see what this code would look like transformed using annihilation instead. Here

the goal is to create an array that contains only the dense values. No fill-in value is needed

because nothing is filled in.

int product = 1;

int x;

// Initialisation

int *nodeArray = malloc(10 * sizeof(int));

int nodeDimensions = 0;

while(node != NULL)

{

 nodeArray[nodeDimensions] = node->Value;

 ++nodeDimensions;

 node = node->Next;

9

}

// Main loop, transformed

for(x = 0; x < nodeDimensions; ++x)

{

 product *= nodeArray[x];

}

free(nodeArray);

Because the actual number of elements in the linked list cannot be known until runtime, the

system takes the safe approach and still allocates an array of ten elements, which it knows is the

maximum possible number (alternatively, you could dynamically grow the array but this is not

done here for the sake of simplicity). The actual number of elements is determined as the linked

list is being traversed in the initialization loop. The main loop, other than using a different upper

bound, is the same as for sublimation (note that this is not always the case; in certain

circumstances, annihilation can cause additional transformations to take place).

The actual location of the relevant values is not important here; the dense index expression is

not used anywhere. If it is used, there are still ways to deal with that; these are covered in

Section 3.4.5.

After initialization, nodeArray contains the following data: �3,7,2,9�
The array is actually more than four elements long, but the rest of its contents are irrelevant

as they are never read.

In the following sections, whenever there is a difference in the approach taken for

sublimation or annihilation, this will be explicitly mentioned.

3.2 Pre- and post-initialization

In the example above, the only additional work that needed to be done came before the

transformed main loop. The only thing done after the loop is freeing the memory associated with

the array, which is not relevant here; it is simply clean-up code, and its omission would not

change the semantics of the program (but it would introduce a memory leak).

Whenever the transformation needs to generate code that uses one of the data structures

from the main loop, and this code is executed before the main loop, it is called pre-

initialization. There are situations when such code needs to be executed after the main loop.

This is called post-initialization.

A common case where this would be necessary is when the contents of the linked list are not

read, but written to. Let us look at an example of a simple algorithm, using the same linked list

structure as in the previous section, where each of the elements is assigned a value from some

other source (in this case a constant is used for simplicity, but normally this would be the result

of some computation; commonly this would involve a read of the same member).

/***DENSE_INDEX(node, node->Index)***/

/***DENSE_DIMENSION(node, 10)***/

while(node != NULL)

{

 node->Value = 42;

 node = node->Next;

}

For sublimation, we have an additional problem to solve: we need to know which indices of

the dense array to assign to. As we will see in later sections, it does not matter what value is

assigned to the unused indices, since these will never be read. You can see that in the code below

the post-initialization loop will only read the original dense indices. If the statement that

10

determines the value is expensive, it may be desirable to perform it only for valid indices. In this

example that is not the case; it is after all only a constant. Therefore, we simply execute the

statement every iteration.

// Pre-initialisation

int *nodeArray = malloc(10 * sizeof(int));

int x = 0;

// Main loop, transformed

for(x = 0; x < 10; ++x)

{

 nodeArray[x] = 42;

}

// Post-initialisation

while(node != NULL)

{

 node->Value = nodeArray[node->Index];

 node = node->Next;

}

free(nodeArray);

For annihilation, we will need a pre-initialization loop to find out the proper upper bound to

use. We will also need to keep a counter to know what index to use for indexing the nodeArray.

Below is the same code, transformed with annihilation.

// Pre-initialisation

int *nodeArray = malloc(10 * sizeof(int));

int nodeDimensions = 0;

int x = 0;

Node *nodeCopy = node;

while(nodeCopy != NULL)

{

 ++nodeDimensions;

 nodeCopy = nodeCopy->Next;

}

// Main loop, transformed

for(x = 0; x < nodeDimensions; ++x)

{

 nodeArray[x] = 42;

}

// Post-initialisation

nodeCopy = node;

x = 0;

while(nodeCopy != NULL)

{

 nodeCopy->Value = nodeArray[x];

 nodeCopy = nodeCopy->Next;

 ++x;

}

free(nodeArray);

It will often be the case that the linked list value is both read and written. In this case, pre-

initialization for the read access is generated first. The post-initialization will then be able to use

the same array as the pre-initialization code. For example:

/***DENSE_INDEX(node, node->Index)***/

/***DENSE_DIMENSION(node, 10)***/

while(node != NULL)

{

 node->Value = node->Value * 2;

11

 node = node->Next;

}

Using sublimation, this will be transformed to the following, with fill-in value zero:

// Pre-initialisation

int *nodeArray = malloc(10 * sizeof(int));

int x;

Node *nodeCopy = node;

memset(nodeArray, 0, 10 * sizeof(int));

while(nodeCopy != NULL)

{

 nodeArray[nodeCopy->Index] = nodeCopy->Value;

 nodeCopy = nodeCopy->Next;

}

// Main loop, transformed

for(x = 0; x < 10; ++x)

{

 nodeArray[x] = nodeArray[x] * 2;

}

// Post-initialisation

nodeCopy = node;

while(nodeCopy != NULL)

{

 nodeCopy->Value = nodeArray[nodeCopy->Index];

 nodeCopy = nodeCopy->Next;

}

Transformation of this code with annihilation is analogous to this so the result of this is not

given.

Note that because there is more than one initialization loop, which all depend on the initial

value of node, a copy of node is made and used instead.

This example also shows something else. Because the fill-in value is zero, there is a more

efficient way to set it (using the memset function, which on most architectures is much faster

than setting the values manually in a loop), which allows us to use the original loop construct for

the pre-initialization loop, potentially drastically reducing the number of iterations needed.

3.3 Two types of loops

As indicated earlier the loops in the matrix multiplication sample are different from typical

linked list loops such as the loops in the examples in the previous two sections.

Recall this example:

int product = 1;

/***DENSE_INDEX(node, node->Index)***/

/***DENSE_DIMENSION(node, 10)***/

while(node != NULL)

{

 product *= node->Value;

 node = node->Next;

}

The transformation is told, via the DENSE_DIMENSION directive, that the dense data

structure represented here had ten values. Since the linked list is sparse, it likely has less than

ten nodes (only four in the example list), since certain values were omitted. This also means that

the loop will iterate fewer than ten times. In other words, the loop body will be executed fewer

times than there are values in the original structure.

12

Now consider the same example, but written in an alternative way.

int product = 1;

int x;

/***DENSE_DIMENSION(node, 10)***/

for(x = 0; x < 10; ++x)

{

 if(node != NULL && node->Index < x)

 node = node->Next;

 if(node != NULL && node->Index == x)

 product *= node->Value;

}

This code has the same effect as the earlier sample1, but it has a form that is very similar to

the loops in the matrix multiplication example. In particular, despite the fact that the linked list

contains less than ten members, the loop body will execute exactly ten times. A guard is used to

ensure action is taken only when the linked list element is valid for the current iteration. So the

loop body will be executed exactly as many times as there are values in the original structure.

A loop which iterates only over the elements over the sparse list, as in the first case, is called a

sparse loop. A loop which executes as many times as the dimensions of the original data,

regardless of the number of elements in the sparse list, is called a semi-dense loop.

The treatment of the two types of loops is mostly the same, but there are some slight

differences. You can immediately observe that when performing sublimation on a sparse loop,

the transformed loop will have more iterations than the original, but for a semi-dense loop the

number of iterations will remain the same. Conversely, when performing annihilation the

number of iterations stays the same for a sparse loop, whereas it decreases for a semi-dense

loop. It is mainly this difference in the annihilation process where it is necessary to make the

distinction between sparse and semi-dense loops.

Another difference is the determination of the dense index. The dense index is an important

piece of information for the transformation; it is the index that a value in the sparse linked list

had in the original dense representation in the data. For a sparse loop, the dense index is not

implicitly retrievable from the code, so it must be specified in some way. As we have already

seen, the DENSE_INDEX transformation directive is used to indicate what expression to use to

determine the dense index. In a semi-dense loop, the dense index is implicit in the progress of

the loop, so the loop counter can be used. The DENSE_INDEX directive is not necessary in this

case.

The transformation method will treat a loop as semi-dense whenever the DENSE_INDEX

directive is not present for that loop or the expression it specifies is independent of the linked

list expression. Otherwise is will treat it as a sparse loop.

3.4 Linked list transformation algorithm

We will now present the algorithm used to transform a linked list into a dense array. The

linked list transformation consists of the following steps, which will be discussed separately:

1 The fact that the two examples are semantically identical can be shown as follows: because Index is a

proper dense index member, for any nodes x and y where y succeeds x in the list, x->Index < y->Index.

This means that the expression node->Index < x will evaluate true in the iteration immediately following

one where node->Index == x was true. Then after evaluating node = node->Next, node->Index must be

equal to or higher than x. This means that all nodes in the linked list are visited, and that for each of them

the condition node->Index == x will be true exactly once, leading to the same sequence of multiplications

as in the original sample.

13

1. Find candidate structures that could be part of a linked list

2. Analyze usage of these structures in the code to look for linked list access patterns.

3. Determine whether the loop containing linked-list access can be safely transformed.

4. Identify data members in the linked list structure.

5. Generate appropriate replacement dense data structures.

6. Replace linked list accesses with dense structure accesses, and generate the appropriate

initialization.

7. Attempt to move the initialization loops so that they are not in any outer loops

As indicated in the introduction, pointer access types vary wildly, so the transformation must

be capable of determining which pointers are actually linked lists. Step one and two deal with a

heuristic approach of finding pointer usage patterns that indicate a linked list. In step three and

four, the identified code sections are validated to see if they are safe to transform. Step five and

six generate the initialization code and replace the original code with the transformed code, and

step seven tries to move the initialization loops out of the way as much as possible.

Before these steps can be executed, as we will see, it is necessary for certain features in the

code to be normalized so that they can be processed. This is described in section 3.5.

In the following sections, we will look at each of these steps in more detail.

3.4.1 Finding linked list structure candidates

To begin the process of linked list transformation, user defined types that can be used as a

node in a linked list must be identified. All structure definitions in the source file will be

examined. A structure X can potentially be part of a linked list when it contains a member that is

a pointer to the type X, because this member could be used as a next pointer. A linked list

candidate is a pair of values, one being the name of the structure that meets these

requirements, and the other being the name of the potential “next” member.

For instance, it will look at the following structure from the matrix multiplication example:

struct Cell {

 int Value;

 int ColIndex;

 int RowIndex;

 struct Cell *RowNext;

 struct Cell *ColNext;

};

This structure contains two members that are a pointer to the defining structure type, namely

RowNext and ColNext. This means that this structure has not one, but two members that would

allow it to be a linked list. Therefore two linked list candidates will be generated from this

structure; one for RowNext, and one for ColNext. Note that it is not necessary to look at the

names of the members; although the use of the word “next” is a definite hint, the next step makes

it unnecessary, as it is the usage pattern of the structure that determines whether it is actually a

linked list. By not paying any attention to identifier strings, we can transform code that uses, say,

Chinese identifiers just as easily as English.

Often a structure containing two members of the defining type is actually part of a binary tree

and not of a list. Indeed, any linked list candidate found by this step might not actually be a

linked list. The next step will be able to determine whether this is actually a linked list. The nice

thing about this approach is that even if this structure were part of a binary tree, if there is any

place in the code where some loop iterates over for instance the left-most branch of this tree, in

a fashion that looks like a linked list even though it is really not, it would still be possible to

perform the transformation.

14

In the matrix multiplication example, the following linked list candidates would be found:

Cell::RowNext, Cell::ColNext, RowHead::Next, and ColHead::Next.

Below is the algorithm for step one in pseudo-code.

function FindCandidateStructs(translationUnit)

 candidateList = {}

 foreach structDefinition in translationUnit

 foreach member in structDefinition

 if GetType(member) = pointer to GetType(structDefinition)

 candidate = [struct-definition, member]

 Add(candidateList, canditate)

 endif

 next

 next

 return candidateList

3.4.2 Analyzing candidate structure usage

Once the linked list candidates are identified, we will proceed to look for locations in the code

where these structures are used, and will try to determine if this usage is eligible for

transformation. It can do this on a case-by-case basis; each loop or nested loop in the code that

uses a linked list candidate can be evaluated separately from any other usages, and even if there

are usages that cannot be transformed, that does not mean that other usages of the same

candidate in other places of the code cannot be transformed.

Each linked list candidate found in step one, consisting of a candidate structure and member,

is examined to look for loops in the code that have a statement that takes a variable, whose type

is a pointer to the candidate structure, and assigns it the value of the candidate member of that

same variable, e.g. it looks for statements of the form variable = variable-

>candidate_member. This is called the linked list iteration statement. Looking at the

MatrixMultiply function presented earlier, it can be seen that two of the candidates have a valid

usage: leftRow = leftRow->Next is an iteration statement for RowHead::Next, while leftCell =

leftCell->ColNext is one for Cell::ColNext. This tells us that the loops containing these

statements might be a candidate for transformation. The loops that contain these statements will

be marked as candidate linked list traversals. Note that only the directly containing loops are

candidates; so in the case of the Cell::ColNext candidate only the innermost loop is a candidate

traversal, not the middle and outer loops. Similarly, the candidate traversal for RowHead::Next is

the middle loop, not the outer loop.

It is this step that is the most important part of the heuristic used to find linked lists. As noted

above, looking for this pattern makes it unnecessary to consider the naming of the pointer

members, and the fact that only ColNext is used for rightCell means that this is not a tree

(actually, it might still be a tree, but as noted above this does not matter as long as this particular

usage looks like a linked list).

If a loop is a candidate traversal for more than one linked list candidate, each must be

evaluated separately. The presence of other variables used in the loop is not an obstruction,

provided none of the rules in the next section are violated.

The C language provides some difficulty here if we wish to be flexible about how the linked

list is used. So far we have talked about a linked list variable, while in fact it would be more

desirable to consider this in terms of expressions. After all, if a loop uses someArray[x] =

someArray[x]->next in a consistent fashion, we would want our algorithm to recognize this as

well. In this case, someArray is not actually a candidate variable, because it is not of itself the

correct type. However someArray[x] is an expression whose result type is of the correct type, so

15

we could call this a candidate expression. So the linked list iteration statement would be

formally identified by an l-value expression which resolves to a pointer to a candidate structure,

which is assigned a value that is found by taking that same expression, and accessing the

candidate member for this linked list candidate.

The difficulty in implementing it so that expressions instead of variables are considered lies

with the fact that both expressions would need to be equivalent. To this end, a pre-processing

step that normalizes all expressions so that they can be directly compared is performed.

Normalization is further covered in section 3.5.

Step two can be written in pseudo code as follows.

function FindCandidateTraversals(function, candidateList)

 loopStack = {}

 traversalList = {}

 statements = FlattenStatements(GetBody(function))

 foreach statement in statements

 if IsInsideSafeRegion(statement)

 if IsLoopStart(statement)

 # check for init loops generated

 if IsInitLoop(statement)

 SkipLoop(statement)

 else

 Push(loopStack, statement)

 endif

 elseif not Empty(loopStack) and

 statement like "expression = expression->member"

 testCandidate = [GetType(expression), member]

 if Contains(candidateList, testCandidate)

 traversal = [Peek(loopStack), testCandidate, statement]

 # check if this traversal was not already processed

 if not IsProcessed(traversal)

 Add(traversalList, traversal)

 endif

 endif

 endif

 if IsLastLoopStatement(Peek(loopStack), statement)

 Pop(loopStack)

 endif

 endif

 next

 return traversalList

The FlattenStatements function recursively flattens all compound statements in the function

body into a single list containing all statements, marking the beginning and end of compound

statements so it remains possible to identify them. IsLoopStart returns true if the statement is a

“do” or “while” statement (for-loops are not considered because they are transformed into while

loops during normalization). IsLastLoopStatement returns true if the statement after the given

statement is outside the loop body of the specified loop.

The result of this function is a list of sets of a loop, linked list candidate and linked list

iteration statement identifying the candidate traversals in this function.

3.4.3 Transformation evaluation

Before we can continue with transforming the loop, we must evaluate if the candidate

traversal is safe to transform. Because of the incredible expressive power of C this is not an easy

task; it is easy to accidentally forget to mention some situation that would prevent a correct

16

transformation. For this reason the conditions are, as much as possible, written so that they

demand the code fits a certain form that is known to be safe instead of demanding it does not

have a form that is not safe.

In the section below, when we refer to the linked list expression, this is the expression whose

type is a pointer to the candidate structure and which is used in the linked list iteration

statement. As indicated in the previous section, this can be a simple variable or a more

complicated expression.

We must first define what we consider to be a modification of an expression. An expression is

modified when it, or any sub-expression of it, is used on the left-hand side of an assignment

expression; when the dereferencing of any sub-expression of the expression is used on the left-

hand side of an assignment; and when a reference to the expression or any sub-expression of it

is passed to a function. The last case does not necessarily mean the value will be modified, but it

can be, and without analyzing the function it is impossible to determine if it will; therefore, we

will assume worst case. Whenever the conditions below mention an expression or variable is

modified (e.g. a condition like “x may not be modified”) this definition of modification is used.

The following examples illustrate this. Consider the expression x->y. Here x is a pointer to

some structure containing a member named y.

x->y = z;

The expression is directly assigned to, so it obviously means that the value is modified.

x = z;

X is a sub-expression of x->y. The value of x changed, so the next time x->y is evaluated it will

yield different results. Therefore, we count this is a modification to x->y.

*x = z;

Although x itself did not change, the contained value of x (which is the structure it points to)

is overwritten. Since z probably held a different value y, the value of x->y will have changed by

this statement.

func(&x);

The function receives a pointer to x, so it can potentially modify the value of x; since the

function is not analyzed, we will assume it does, and count this is a modification of x, and thus of

x->y.

x->a = z;

This does not count as a modification. Although x is dereferenced, the result of this is not

actually assigned to; it is used as part of an expression that is assigned to, but that does not

constitute an assignment to x itself.

*(x->y) = z;

This does not count as a modification either. The value of x->y itself did not change.

Now consider the expression x[y]. Here, x is an array.

x = z;

As above, this counts as a modification of x[y], since x changed.

x[y][z] = a;

17

This again does not count as a modification. The value of x[y] itself is only read and then

used in a further expression. Although the result of that expression is assigned to, the value of

x[y] itself is not changed.

An expression is considered to be loop-invariant if it is not modified anywhere inside the

loop body. If an expression A is modified, but is assigned the value of an expression B that is

loop-invariant, A is considered loop-invariant as well.

The root non-invariant expression for an expression A that is not loop-invariant and that is

assigned the value of expression B is the root non-invariant expression of the non-invariant sub-

expression of B. If the sub-expression of B that is not loop invariant is equal to A, the non-

invariant expression of A is A itself.

Consider the following example:

const int N;

int x = 0, y, z;

while(x < N)

{

 x = x + 1;

 y = x;

 z = N;

 function(x, y, z);

}

This loop uses three variables: x, y and z. All three are assigned to in the loop body. Variable z

is modified, but the value it is assigned is a constant. Every time when the value of z is read it has

the same value, so z is loop-invariant despite of the assignment. The variable x is assigned a

value that depends on its value from the previous iteration, so x is not loop-invariant. The non-

invariant part of the expression that is assigned to x is x itself, so the root non-invariant

expression of x is x. The variably y is assigned the value of x, which is not loop-invariant, so y is

also not loop-invariant. The root non-invariant expression of y is equal to the root non-invariant

expression of x, which is x.

Related, but not equal, to this is the notion of side-effects. An expression is said to have side-

effects if it can modify any other expression. An expression that is – or contains – an assignment

expression (such as x = y) has side-effects because it modifies the left-hand side of that

assignment. Any expression containing a function call (e.g. x + func()) can also have side-

effects, since the function can modify global or static variables. Because we do not analyze the

function, we again assume the worst and say that any function call will have side-effects.

We can now state the conditions that must be met. In order for it to be possible to

automatically transform a loop iterating over a linked, it must meet the following conditions:

1. The linked list expression must not have side effects.

2. Loop termination control must be trivial; if determining whether or not the loop

should terminate is a large part of the computational cost of the loop, then doing the

transformation will move – or more likely, multiply – this since it becomes part of the

initialization loop. To make it easier to reason about this the normalization step will

transform all loop structures into while loops or do-while loops (see section 3.5.2),

although this is not done in the examples posed in this thesis. The loop termination

guard must meet the following conditions:

o It may not have any side-effects.

o If the guard uses any variables that are not loop-invariant other than those

that are part of the linked list expression (these are loop control variables;

typically this will be a counter or similar), then there may be exactly one

18

modification of these variables and this modification must occur on every loop

iteration (i.e. it may not be guarded).

o The loop termination condition must be the only factor controlling

termination of the loop; therefore the use of goto and break statements is

prohibited.

Typically, a linked list iteration loop will use a condition similar to while(

candidate_variable != NULL), or sometimes a counter such as in the matrix

multiplication example. This means that this condition will not often pose a problem.

3. The linked list iteration statement may be the only statement in the loop body that

modifies the linked list expression.

4. The “next” pointer member may not be identified as a data member in step 4.

5. Any expression, other than the linked list iteration statement, that might be moved to

an initialization loop may not have side effects. In an implementation, it is simpler to

check this while generating the initialization loops instead of here in a separate step.

6. Any expression that might be moved to the initialization loop may only use constants,

loop-invariant values, members of the linked list structure, and loop control variables.

7. Any expression that dereferences the linked list expression may not be modified.

8. The linked list expression may not be passed to a function, because a function could

violate condition 7 and the function could use members of the structure which means

such usages need to be included in step four and also transformed in step six, neither

of which can be done.

9. If the linked list expression is guarded, it must be possible to move that entire guard,

including both the true and false parts, to the initialization loop.

10. When performing annihilation on a semi-dense loop, there must be a single guard that

covers all statements in the loop body except for the linked list iteration statement

and its guard, and statements related to loop control (such as those that increment

the counter). This guard must meet the conditions for code that can be moved to the

initialization loop, and it must not have an else-clause. There may be no statements

(besides the linked list iteration statement and its guard) outside this guard. This

ensures that there are no statements that need to be executed in iterations that would

be eliminated by the annihilation process.

Below is the algorithm for checking these conditions:

function ContainsModifications(statement, expression, checkDereferenced)

 if statement like "expression = ..." or

 ContainsFunctionCallWithArgument(statement, pointer to expression) or

 (checkDereferenced and statement like "*expression = ...")

 return true

 endif

 foreach subExpression in expression

 if ContainsModifications(statement, subExpression, true)

 return true

 endif

 next

 return false

function ContainsFunctionCallWithArgument(statement, expression)

 foreach functionCall in statement

 foreach actualParameter in functionCall

 if actualParameter = expression

 return true

19

 endif

 next

 next

 return false

function HasSideEffects(expression)

 if ExpressionContainsFunctionCall(expression) or

 ExpressionContainsAssignment(expression)

 return true

 else

 return false

 endif

function FindModificationStatements(compoundStatement, expression)

 assignments = {}

 statements = FlattenStatements(compoundStatement)

 foreach statement in statements

 if ContainsModifications(statement, expression)

 Add(assignments, statement)

 endif

 next

 return assignments

This function should not be called on the linked list iteration statement,

the result would be wrong.

function CanMoveToInitLoop(loop, statement)

 foreach subExpression in statement

 if HasSideEffects(subExpression) or

 not (IsLoopInvariant(loop, subExpression) or

 IsLoopControlVariable(loop, subExpression)

 return false

 endif

 next

 return true

function CanMoveToInitLoop(loop, compoundStatement)

 statements = FlattenStatements(compoundStatement)

 foreach statement in compoundStatement

 if not CanMoveToInitLoop(loop, statement)

 return false

 endif

 next

 return true

function IsLoopControlTrivial(loop, linkedListExpression)

 loopCondition = GetLoopCondition(loop)

 if HasSideEffects(loopCondition)

 return false

 endif

 loopControlStatements = {}

 foreach variable in loopCondition

 if not IsLoopInvariant(loop, variable) and

 not ContainsVariable(linkedListExpression, variable)

 assignments = FindModificationStatements(GetBody(loop), variable, false)

 if Count(assignments) <> 1 or IsGuarded(assignments[0]) or

 IsInNestedLoop(assignments[0])

 return false

 else

 Add(loopControlStatement, assignments[0])

20

 endif

 endif

 next

 statements = FlattenStatements(GetBody(loop))

 foreach statement in statements

 # Check for goto or break statements; condition 2

 if statement = "break;" or statement like "goto ..."

 return false

 endif

 next

 # store the loop control statements for later use

 SetLoopControlStatements(loop, loopControlStatements)

 return true

function EvaluateCandidateTraversal(candidateTraversal)

 linkedListExpression = GetLinkedListExpression(candidateTraversal)

 loopCondition = GetLoopCondition(candidateTraversal)

 loop = GetLoop(candidateTraversal)

 iterationStatement = GetLinkedListIterationStatement(candidateTraversal)

 # Check for disallowed side effects; condition 1

 if HasSideEffects(linkedListExpression)

 return false

 endif

 # Check loop condition variables for validity; condition 2

 if not IsLoopControlTrivial(loop, linkedListExpression)

 return false

 endif

 loopControlStatements = GetLoopControlStatements(loop)

 # check function calls using the linked list expression; condition 8.

 foreach statement in statements

 if ContainsFunctionCallWithArgument(statement, linkedListExpression)

 return false

 endif

 foreach subExpression in linkedListExpression

 if IsPointer(subExpression) and

 ContainsFunctionCallWithArgument(statement, subExpression)

 return false

 endif

 next

 next

 # Check linked list expression assignments; condition 3 and 7

 assignments = FindModificationStatements(GetBody(loop),

 linkedListExpression, true)

 if Count(assignments) <> 1 or assignment[0] <> iterationStatement

 return false

 endif

 # Check if iteration statement guard and all associated statements

 # can be moved; condition 9

 iterationGuard = GetGuardAroundStatement(iterationStatement)

 if iterationGuard <> null

 if not (CanMoveToInitLoop(loop, iterationGuard) and

 CanMoveToInitLoop(loop, GetTrueStatement(iterationGuard)) and

 CanMoveToInitLoop(loop, GetFalseStatement(iterationGuard)))

 return false

 endif

 endif

 # Condition 10

 if transformationMode = annihilation and LoopType(loop) = semi-dense

 # Note: compound statement is not flattened here, so we only check

21

 # statements directly inside the loop, not further nested statements.

 guardFound = false

 foreach statement in GetBody(loop)

 if statement <> iterationGuard and statement <> iterationStatement

 if statement like "if(expression) ..." and not guardFound

 if not CanMoveToInitLoop(loop, expression)

 return false

 endif

 guardFound = true

 else if not Constains(loopControlStatements, statement)

 return false

 endif

 endif

 next

 endif

 return true

The code above checks all conditions except 4, 5 and 6. Before condition 4 can be checked, it

is necessary to find data members, which will be done in the next step. And as indicated,

conditions 5 and 6 are more easily checked when the code sections to which they apply are

identified in later steps. The code for the next steps will use some of the functions defined here

to aid in those checks.

There are three other global conditions that are not checked but assumed to be true for any

code marked safe for transformation. The first is that there is no aliasing, or at least that all

aliasing done is safe. If there is another variable that actually aliases the linked list expression,

the above conditions would not consider a write to such a variable harmful even though it

actually is. Trying to determine whether this is the case is a very difficult problem since it must

be done globally. It is possible that a global variable aliases the linked list expression, and that a

function, called in the loop body, ends up modifying this value. In the example, the Matrix

structure is passed by value, but it contains two pointers, each of which might have a global alias

created before the MatrixMultiply function is even called. Indeed, any of the Cells pointed to in

the matrix may have some global variable pointing to it, which means that in some iterations the

current value of leftCell might have an alias and in others not. One can mitigate some of this by

posing some strict requirements, such as prohibiting global variable accesses, including in any

functions called. That would still leave aliasing through function parameters, which cannot be

analyzed at all unless you know every possible invocation point of the function (and even then it

is very difficult) and local aliases. Some steps can be taken to reduce the problem of aliasing,

which are taken in the normalization described in Section 3.5.1, but we cannot completely solve

the aliasing problem.

The second condition is that no external processes may modify any value. A small check could

be done in the program which would disqualify the use of variables marked volatile, but even if

none are marked so it does not exclude external interference (memory boundaries may be

enforced in other ways such as operating system-specific critical sections or other

synchronization primitives).

The third condition is that usages of the linked list members are independent. If they are only

read, the first and second condition will ensure that this is true (since the member may not be

modified by aliasing or by external code). If a member is written to, a write in one iteration may

not affect a read or write in a later iteration. Unless the linked list contains cycles, this is unlikely

to happen anyway.

We must simply assume that these conditions are met, and require the user to provide only

input code that meets them. If code that breaks these rules is transformed, transformation will

22

succeed but likely yield code that does not do the same as the original code anymore, or, worse,

that sometimes behaves the same and other times does not depending on synchronization,

initial values, or other external factors.

For safety, it is assumed that by default that all code in the translation unit is unsafe to

transform. It will look for transformation directives that denote safe code sections or individual

loops, and only attempt to transform those that are indicated safe. Code marked safe is only

assumed to meet the criteria that cannot be checked. All the requirements that can be checked

will be checked, so marking a loop as safe to transform is no guarantee that it can or will be

transformed. Transformation directives are further covered in section 3.6.

The normalization mentioned earlier and discussed in further detail in section 3.5 is of great

importance for this step, since it needs to be able to reliably determine if expressions are used in

safe ways in the loop body. If equivalent expressions are not of the same form, unsafe usages

may be missed, leading to unsafe transformations.

In order to evaluate this step, data dependence and flow analysis must be performed on all

variables. For every usage of a variable, it must be known what other values that variable

depends on, i.e. those values used when that variable was last assigned to. This is a fairly

straight-forward process that most compilers will do anyway to determine where instructions

can be reordered or removed. Here, the information is used to find loop-invariant variables and

to find indirect usages of important values. Therefore, whenever the above list of conditions

mentions a usage of a variable (or expression), this may also mean that a variable (or

expression) is used that depends on that variable.

The list of conditions in this step contains only those conditions that are strictly necessary for

this transformation. In this thesis, we will further transform the code by translating it to

FORTRAN. Some additional conditions apply to make this translation possible, which will be

covered in the relevant section.

3.4.4 Find data members

In order to generate replacement dense data structures, it must be known what data this

dense data structure should contain. In other words, it needs to determine what members of the

linked list candidate structure are used to store either input or output data relevant to the

computation. To find this, it must consider all members besides the linked list next pointer

already identified. If a structure contains more than one “next” pointer, we will exclude only the

one that is actually used in this candidate traversal.

This analysis must be done for each candidate linked list traversal; it cannot be stored per

structure and re-used. This is because we want to have the smallest possible number of data

members, and not each usage of the linked list structure needs to actually use all the remaining

members.

The first part of this step is to look at the loop body, including any nested loops, and find all

members of the structure that are used. Obviously members that are not used at all need not be

given any further consideration.

However, it is not the case that all members that are used must automatically be data

members. Members that are written to will always be considered data members, but for a

member that is read to be considered as a data member the read operation must affect some

variable that is used after the current loop iteration. That means it is either assigned to a

variable that will be read after the iteration, or it participates in a guard of a modification of a

variable that is used after the iteration. Because function calls can have side-effects, guarding a

function call also counts.

23

Consider the following example:

int prev = 0;

while(node != NULL)

{

 node->Value2 = prev;

 prev = node->Value1;

 node = node->Next;

}

This loop sets the Value2 member to the value of the Value1 member of the previous node in

the list (this is not a particularly likely operation to perform on a sparse list, but that is not the

point). The value of prev is not used after the loop, but it is used in the loop body before it is

assigned to again. This means that, in the flow of execution of the loop, the value of prev will be

used after the current iteration of the loop ends. This means that the value of node->Value1

affects something that happens after the iteration in which it is read, so node->Value1 must be a

data member.

int remainder;

while(node != NULL)

{

 remainder = node->Value % 2;

 if(remainder == 1)

 Foo();

 node = node->Next;

}

This example calls the function Foo() for odd values of node->Value. Here, node->Value is

assigned to the variable remainder, which is not used after the loop or across iterations. So at

first glance, Value would not qualify as a data member. However, the value of remainder is used

in an if-statement which guards a function call. This function call might set global variables,

write output to a file or the console, make a network connection, etc.; i.e. it can have any number

of side effects that last beyond the scope of the loop. This means that node->Value is a data

member after all.

As you can see, data dependence analysis is absolutely vital to finding data members.

If a potential data member is used only in a guard, there is still the possibility that it does not

need to be a data member. If the guard that uses the data member will be moved to the

initialization loop and completely eliminated from the transformed main loop, the member

would not count as a data member. A guard will be moved to the initialization loop only if:

• It is used to guard the linked list iteration statement. This guard construct will be

moved in its entirety to the initialization loop, so it is not needed in the transformed

main loop.

• It guards the usage of other identified data members, and the guard that this value is

part of uniquely determines whether the other data member is used or not (if the

member is used in the true-part of the guard that uses the data member, it may not be

used in the false-part, or vice versa, and it may not be used outside the if-statement).

In this case, the fill-in value, or if necessary an additional validity check (as indicated

in the next section) will replace this guard, so it will no longer be present in the main

loop after transformation.

Naturally, the guard expressions must meet the conditions set in the previous section for

code that will be moved to the initialization loop.

Again, data dependence analysis is used:

24

int product = 1;

int temp;

while(node != NULL)

{

 temp = node->Value;

 if(node->Index % 2 == 0)

 product *= temp;

 node = node->Next;

}

This computes the product of those values that have an even numbered dense index. Without

using dependency analysis, we would say that node->Index is used to guard an operation with

side-effects, and it does not uniquely guard a data member, so it must be a data member.

However, although node->Value is read outside the guard, it is in actuality only used if the guard

evaluates to true, because it is assigned to temp, and temp is only used inside the guard. So using

data dependence analysis, we can show that node->Index uniquely guards the use of node-

>Value, which means it can be removed if there is a fill-in value for node->Value or replaced

with a validity check if there is not. This means that this expression will be removed from the

transformed loop so node->Index is not a data member.

Furthermore, if the dense index expression supplied by the DENSE_INDEX directive uses a

member of the linked list structure, if that member is read in the loop it is still not a data

member, as its usage can be replaced by the counter for the new loop.

Let us look at the innermost loop of the matrix multiplication algorithm as an example:

for(x = 0; x < dimensions; ++x)

{

 if(leftCell != NULL && leftCell->ColIndex < x)

 leftCell = leftCell->ColNext;

 if(leftCell != NULL &&

 leftCell->ColIndex == x &&

 leftCell->RowIndex == row)

 {

 result[row][col] += leftCell->Value * right[x][col];

 }

}

The linked list traversal we are looking at is that of leftCell, a variable of type Cell. We see that

the following members are used: the leftCell pointer value itself (in a comparison to NULL), and

the members Value, ColIndex and RowIndex (note that once again, we are not looking at names,

so we are ignoring the fact that one of the members is conveniently named Value; even if we did

this, it would not guarantee that the other members could be discarded, so it would not help).

Value is used on the right-hand side of an assignment, and is assigned to something that was

passed by reference to this function, which means it can be used after the function returns,

which is after the loop iteration, so Value is most certainly a data member. The pointer value,

ColIndex and RowIndex are used in guards. The first guard is the guard of the linked list

statement, which will be moved entirely to the initialization loop, so according to the first point

above, we can ignore it. The second guard uniquely guards the use of Value, and all usages meet

the criteria of the previous section (since NULL is a constant, x is the loop control and row is

loop-invariant). This means that these three guard expressions can be replaced by a validity

check or removed entirely if a suitable fill-in value is found (see the next section), and that none

of these three members are data members, leaving only Value.

25

Note that it is perfectly valid for the pointer value itself to be identified as a data member.

However, if this has not been eliminated after transformation, it will obstruct translation to

FORTRAN. Fortunately, that is not the case in this example, and it would not likely often be the

case either. Still, it is important to realize that this would not be a problem for the

transformation itself, only for the follow-up steps we wish to take in this thesis.

The algorithm for step four:

function WillBeRemoved(guardStatement)

 ; Find which data members are used when the guard evaluates true or false.

 trueDataMembers = GetDataMembersForCompound(GetTrueStatement(guardStatement)

 falseDataMembers =

 GetDataMembersForCompound(GetFalseStatement(guardStatement)

 ; If the two are not the same, there is a member that is used

 ; in one but not the other, thus this guard will be removed

 return trueDataMembers <> falseDataMembers

function FindDataMembers(traversal)

 dataMembers = {}

 listStruct = GetLinkedListType(traversal)

 listExpression = GetLinkedListExpression(traversal)

 loopCondition = GetLoopCondition(traversal)

 loop = GetLoop(traversal)

 iterationStatement = GetLinkedListIterationStatement(traversal)

 loopBody = GetBody(loop)

 compound = GetInnermostUnprocessedCompound(loop)

 while compound <> null

 ; Statements are not flattened, so it does not process

 ; nested compound statement

 foreach statement in compound

 foreach member in listStruct

 if ContainsModifications(statement, "listExpression->member", false)

 ; Write always means a data member

 Add(dataMembers, [member, Write])

 AddDataMemberForCompound(compound, member)

 else if not IsDenseIndexExpression("listExpression->member") and

 ((statement like "lvalue = rvalue" and

 ContainsDependantExpression(rvalue, "listExpression->member") and

 IsUsedAfterLoopIteration(loop, lvalue)) or

 (statement like "if(expr)" and

 ContainsDependantExpression(expr, "listExpression->member") and

 not (statement = GetGuard(iterationStatement) or

 WillBeRemoved(statement))))

 ; this is a read that has effects outside the iteration or is a guard

 ; that is not the guard for the iteration statement and not a guard

 ; that can be moved.

 Add(dataMembers, [member, Read])

 AddDataMemberForCompound(compound, member)

 endif

 next

 next

 SetProcessed(compound)

 compound = GetInnermostUnprocessedCompound(loop)

 end while

 if Contains(dataMembers, GetNextPointerMember(traversal)

 return null

 endif

 return dataMembers

26

The algorithm processes compound statements in nesting order, starting with the most

deeply nested statement that has not yet been processed (for the purposes of this algorithm, if a

“for” or “if” or similar statement has only a single nested statement instead of a compound, this

is still treated like a compound). This way whenever an if-statement is encountered it is already

known what data members are used in the statements it guards. The

GetDataMembersForCompound function, which is used in determining if a guard uniquely

guards a data member and will therefore be removed or replaced in the transformed loop,

returns only those data members that are used in all code paths of the given compound,

ensuring that nested if-statements are correctly handled.

Data dependence analysis results are used by the function ContainsDependantExpression;

this function returns true if the expression in the first parameter contains any expression that is

dependent on the expression in the second parameter. IsUsedAfterLoopIteration also uses data

dependence analysis to determine if the value of the expression in the second parameter is used

beyond a single iteration of the specified loop, as was explained in the beginning of this section.

3.4.5 Generate dense data structures

Once the data has been identified, a dense array must be generated that holds this data.

Important points in this step are determining the element type and the bounds of this array.

The element type is relatively straight-forward. It is ideal if there is only a single data

member, because then this can be used as the array type (provided a validity flag is not needed,

which is explained below). Otherwise a structure must be generated that can hold all the

identified data members.

The sparse linked list does not include all the values of the original data. If the original loop

was a sparse loop, the transformed loop will have more iterations than the original. The

operations that are performed on the data members in the loop body cannot be blindly executed

in the added iterations; this might change the semantics of the code. We must make sure that for

those values that were omitted in the original linked list, the operation is either not executed or

has no effect. For semi-dense loops the same thing applies, but only for operations on data

members that are not executed in all possible code paths through the loop body. If they are

executed in all code paths, they can safely be executed in all iterations of the new loop as well,

since for a dense loop the number of iterations stays the same for sublimation.

With annihilation this is slightly different. Since the loop will not gain iterations, there is no

need to prevent anything from being executed. In a semi-dense loop there will be fewer

iterations after transformation, so anything that is executed on all code paths will actually be

executed fewer times; because there is no good way to deal with this, annihilation is impossible

in these cases; this is expressed by condition 10 in section 3.4.3.

But for sublimation, we must find a way to nullify these operations. There are two ways to do

this: for each identified data member, we can try to find a fill-in value that causes these

operations to have no effect, or we must introduce a flag that indicates whether the value at that

position in the array is valid, which can be used to guard the relevant operations. This must be

done separately for each data member; so if there is more than one data member, we might end

up needing more than one flag. Finding a fill-in value is preferable to using a flag, since it will

greatly simplify the transformed main loop, easing further optimization.

Obviously, data members that are only written to do not need a fill-in value or a guard. Post-

initialization loops only read the valid values, so it does not matter what is written to the array

indices that represent fill-in positions.

27

If we are to use a fill-in value for a data member, we must be certain that it eliminates all side-

effects from the operation that use that data member or are otherwise affected by it (for

example via a dependant variable). That means that no variables whose values would normally

change may change their value now. If the data member is part of a guard, the fill-in value must

be such that the guard evaluates to a value that causes any statements with side effects not to be

executed. If the data member is used directly in an assignment, the value being assigned to may

not change. Finding a semantically correct fill-in value automatically is however not a trivial

matter. As has been noted in [3], certain operations are known to have no effect, such as

multiplying by one or adding zero to a variable. This means that if the data member participates

in a multiplication or addition, one or zero respectively could be the correct fill-in value. In the

case of the matrix multiplication example, if the guard evaluates true, a value is added to the

result, and that value is the data member of the linked list variable multiplied by another value,

and if the guard evaluates false, nothing is added. It is therefore conceivable that an

implementation of the transformation could determine that zero is a safe fill-in value, because it

would cause zero to be added to the result, which is the same as doing nothing.

Alternatively, the programmer can use directives to indicate what the fill-in value should be.

In this case it falls on the programmer to ensure that the fill-in value is correct.

If it is not possible to find a fill-in value, a guard must be put in place that prevents these

operations from happening. In these cases, a validity flag for that data member is added to the

list of data members. The initialization loop will make sure that this flag is set to true for those

array indices where the value of the data member comes from the linked list, and false when it

does not. The guard in the transformed loop that is placed around the operation will check this

flag. If there is already a suitable guard in the original loop, as will often be the case in semi-

dense loops, it may be replaced by this new guard.

Of course finding a fill-in value is preferable, since that means no new guards need to be

added and some of the old guard might be removed completely.

For a semi-dense loop, where a guard is used in the original loop to distinguish between valid

and omitted iteration values, it may be the case that this guard is responsible for other

statements with side effects as well, that do not involve any data member (such statements can

be in either the true or false part of the guard). This means that, even if a fill-in value for the data

member is known, not all side effects related to the guard are eliminated, so the guard must be

maintained. Similarly, in a sparse loop, any statements that do not involve the linked list

expression will need to be prevented from execution on iterations that were introduced by the

transformation, so a validity flag is needed. In this case, if a fill-in value is known, the guard can

use a test for this fill in value so no validity flag needs to be added.

If a guard uniquely guards more than one data member, the guard can be omitted only if fill in

values for all data members can be found that eliminate the side-effects from all guarded

statements.

Let us once again recall the innermost loop of matrix multiplication example.

for(x = 0; x < dimensions; ++x)

{

 if(leftCell != NULL && leftCell->ColIndex < x)

 leftCell = leftCell->ColNext;

 if(leftCell != NULL &&

 leftCell->ColIndex == x &&

 leftCell->RowIndex == row)

 {

28

 result[row][col] += leftCell->Value * right[x][col];

 }

}

This loop is semi-dense; “dimensions” is the original dense upper bound, and even though the

sparse linked list contains less than “dimensions” values, there are still “dimensions” iterations.

As we noted in the previous section, the single data member “Value” is uniquely guarded by a

guard that can be completely moved into the initialization loop. Since there are no other

statements in the guard body besides the one that uses the data member, finding a fill-in would

be ideal since it would mean we can remove the guard entirely.

There is indeed a fill-in value here, but let us first take a look at what would happen if the

compiler was unable to find it. In that case, a validity flag is necessary to indicate whether

“Value” should be used. This means that a new structure is needed for the dense array which

contains this validity flag. The transformation would generate the following structure:

struct CellData

{

 float Value;

 int ValueValid; /* boolean flag */

};

ValueValid is the flag for the Value data member; it is a Boolean value but has type int since C

has no Boolean type. You will notice that the name of this dense structure is the name of the

original linked list structure followed by “Data”. Naturally, the name does not actually matter; in

a real implementation, some steps would need to be taken to ensure a unique name, but other

than that, the name can be arbitrary.

The transformation will create an array of CellData values (which we will call “leftCellArray”

because it replaces the leftCell linked list variable), and initialize each ValueValid flag to false.

The initialization loop will use the original guard around “Value”, and when it evaluates true it

will set “Value” and set “ValueValid” to true.

 The guard can for the transformed loop will be replaced by the guard if(

leftCellArray[x].IsValid). More details about how this transformation actually takes place

will follow in the next section.

As we indicated, there is in fact a fill-in value here, namely the value zero. This value causes

the statement involving “Value” to have no effect; the value of “result[row][col]” does not change

if “Value” is zero (zero is probably the most common fill-in value for sparse data structures,

especially sparse matrices, however it need not always be; we have already seen an example

where it was one instead).

If it can be determined that zero is the fill-in value, either automatically or from a directive,

this can lead to a significant simplification of the resulting code. The “Value” member is now the

only data member, so a new structure is not necessary. Instead, the element type for the dense

array will simply be float, the type of the value member. Because there are no other statements

with side effects, the guard around the statement using “Value” can be eliminated entirely.

We also need to determine the dimensions of the dense array. It would be most preferable if

the dimensions are a constant, but that is unlikely. Even if they are not, it is preferable that a

simple expression, whose value can be determined a priori at runtime, determines the

dimensions. If the loop we are transforming is a semi-dense loop, and the loop is countable, we

iteration count of the loop is the size needed for the array. In the matrix multiplication example,

the loop is countable and the number of iterations depends on the value of “dimensions”, so the

29

value of that variable is the size of the array. This expression will be used to allocate the array,

and in the next step also as the upper bound for the dense loop.

In the case of a sparse loop, we cannot automatically determine if such an expression exists.

In this case, the DENSE_DIMENSIONS transformation directive can be used to indicate what

expression to use.

But in certain situations there is no such expression, for example when using annihilation

where the dimensions will depend on the density of the data, and there might not be any way to

find that other than walking the linked (in the matrix example there is not). We must also be

prepared with a situation where even though there is such an expression, we cannot determine

what it is and no directive is specified either. In these cases, we can use a dynamically growing

array. To minimize the overhead of dynamically allocating and reallocating an array, we will use

the typical approach used by many dynamic array implementations (such as C++’s std::vector

class in most STL implementation) where the array is doubled in size each time it must grow. A

counter is kept during execution of the initialization loop which indicates the length of the array.

After the initialization loop is complete, the value of this counter can be used as the upper bound

for the new transformed main loop.

For a post-initialization loop this is more troublesome, as the array it uses is allocated before

the main loop so the size cannot be determined during the initialization loop. In some cases a

post- and pre-initialization loop share the same array, which solves the problem, but otherwise

an additional pre-initialization loop is needed that does nothing except walk the linked list and

count the number of iterations if the bounds cannot be determined at compile time.

If we are doing annihilation and the dense index expression is used (which for semi-dense

loops means the loop counter), the original index value will be needed. If this value is read

anywhere in the loop (with the exception of the loop control statement for a semi-dense loop),

an array with the relevant values of the index expression will be generated. This dense data

structure is a simple array where the element type is the same as the type of the index

expression (usually int). In order to prevent introducing irregularity in the loop, we will make a

special case for when the expression is used to index an array. Here creating an array for the

index expression would introduce indirection for the array it was indexing, so instead a new

array will be generated with the same element type as the original array, which will be mapped

to the original array during pre- or post-initialization. This can only be done if all other

components of that expression are loop-invariant and safe to move to the initialization loop.

For example, in the matrix multiplication example, the loop variable x of the innermost loop is

used to index the “right” array. That means if annihilation is performed, a new array to replace

“right” is generated, and because the resulting type of “right[x]” is int*, the replacement array’s

element type will be int* as well.

The pseudo code algorithm for step five is given below.

function NeedsFillIn(loop, dataMember)

 return not (AccessType(dataMember) = Write or

 (IsSemiDense(loop) and

 IsUsedOnAllCodePaths(GetBody(loop), dataMember))

function FindAdditionalExpressionsNeedingTransformation(loop,

 linkedListExpression)

 expressions = {}

 indexExpression = GetIndexExpression(loop)

 foreach variable in loopControlVariables

 transformVariable = false

 foreach statement in FlattenStatements(GetBody(loop))

30

 if not (ContainsExpression(linkedListExpression, variable) or

 IsLoopControlStatement(statement)) and

 ContainsExpression(statement, variable)

 # this statement reads the variable but is not a loop control

 # statement like x++

 foreach subExpression in statement

 if ContainsExpression(subExpression, variable)

 if subExpression is array index expression

 # This is an array subscripted by this variable,

 # transform the array

 Add(expressions, subExpression)

 if IsModification(subExpression)

 AddUnique(AccessTypes(subExpression), Write)

 else

 AddUnique(AccessTypes(subExpression), Read)

 endif

 else

 transformVariable = true

 endif

 endif

 next

 endif

 next

 if transformVariable

 Add(expressions, variable)

 AccessTypes(variable) = { Read }

 endif

 next

 return expressions

function GenerateDataStructures(traversal, dataMembers)

 listExpression = GetLinkedListExpression(traversal)

 loop = GetLoop(traversal)

 iterationStatement = GetLinkedListIterationStatement(traversal)

 denseArrays = {}

 accessTypes = {}

 foreach dataMember in dataMembers

 if NeedsFillIn(loop, dataMember)

 fillIn = GetFillIn(loop, dataMember)

 if fillIn <> null

 SetFillIn(dataMember, fillIn)

 else

 Add(dataMembers, CreateFlag(dataMember))

 endif

 endif

 AddUnique(accessTypes, AccessType(dataMember))

 next

 if Count(dataMembers) = 1

 arrayType = TypeOf(dataMembers[0])

 else

 arrayType = new struct

 foreach dataMember in dataMembers

 AddMember(arrayType, dataMember)

 next

 endif

 arrayLength = GetDenseDimensions(traversal)

 Add(denseArrays, [linkedListExpression, arrayType, arrayLength, accessTypes])

 if GetTransformationType() = annihilation

 foreach expression in FindAdditionalExpressionsNeedingTransformation(loop,

31

 listExpression)

 Add(denseArrays, [expression, GetType(expression), arrayLength,

 AccessTypes(expression)])

 next

 endif

 return denseArrays

The GenerateDataStructures code will return a list of triplets, each indicating the source, type

and length of a dense array that will need to be generated. The function GetDenseDimensions is

used to determine the length; it will read the DENSE_LENGTH transformation directive or use

automatic means to try and determine the length. If it cannot determine it, its return value is -1,

which will be a cue for the transformation algorithm to use a dynamic array.

The GetFillIn function uses the FILL_IN directive and perhaps some of the procedures

indicated above to find the fill-in value.

3.4.6 Generate initialization loop and transform main loop

We can now categorize every statement in the original main loop based on the information

gathered in the previous steps. Statements will be classified as one or more of the following:

1. Data member access: these statements access the identified data members of the

linked list, and must thus be transformed to use the new dense structure. The

algorithm will also mark whether it is being read or written.

2. Loop control variable access (direct): for annihilation on a semi-dense loop, these are

statements that are not directly part of the loop control itself (so the statement that

increments the value is not considered) but they do use the loop control variable for

some purpose other than array indexing. Guard statements that will be moved to the

initialization loop will not be marked this way. This will always be a read, since this

value may not be written to outside the loop control due to the requirements stated in

section 3.4.3.

3. Loop control variable access (indexing): same as above, only the variable is used to

index an array. Read or write access to the referenced array element is marked.

4. Linked list iteration statement: this statement must be moved to the initialization

loop.

5. Guard for the linked list iteration statement: idem. This includes all statements under

that guard.

6. Guard where the compound statement in the true or false part contains a statement of

category one, two or three. Statements will be marked category six separately for

each value that is read or written in such a statement in the true or false part. If the

value is accessed in all possible control paths in both the true and false parts of the

guard, the guard need not be present in the initialization loop and thus will not be

marked category 6.

7. Loop control statements. For example, this is the statement that increments the loop

counter. A sparse loop typically does not have any loop control statements.

8. Other statements: all statements involving the linked list variable must necessarily be

of one of the first six categories, so this leaves statements that do not involve the

linked list variable at all. These do not need to be transformed and will be left in the

transformed loop unmodified.

In section 3.4.7 we will see that there is another category of statement that can be present in

the loop, namely previously generated initialization loops that we are attempting to extract from

32

this loop. These statements are ignored here; they are not added to the initialization loops and

they are not retained in the transformed main loop either. They are dealt with separately.

Using this classification, the transformation can generate the initialization loops and the

transformed main loop.

Below is the innermost loop of the matrix multiplication example, with the categories for

each statement indicated in the comments.

for(x = 0; x < dimensions; ++x /* 7 */)

{

 if(leftCell != NULL && leftCell->ColIndex < x) // 5

 leftCell = leftCell->ColNext; // 4

 if(leftCell != NULL &&

 leftCell->ColIndex == x &&

 leftCell->RowIndex == row) // 6 (for leftCell->Value and x)

 {

 result[row][col] += leftCell->Value * right[x][col]; // 1 (read), 3 (read)

 }

}

The assignment is both category one and three: one for the use leftCell->Value, and three for

the use of x (which is only relevant for annihilation). The guard statement uniquely guards both

of these, so it is marked category six for both of them.

The assignment is category three, not two, because it uses x to index the array “right”. This

means that the value that will be copied to the replacement array is that of “right[x]”.

In the real transformation, this for-loop would have been transformed into a while loop by

the normalization. This means that the “++x” expression would have been a separate statement

at the end of the loop, which is category seven.

3.4.6.1 Loop termination

Several loops will be generated during the transformation process – the transformed main

loop and one or more pre- and post-initialization loops – and they will all use one of two possible

termination guards: the original guard from the untransformed main loop, or the new guard for

the dense loop. The new loop statement will always be a for-loop, e.g. for(x = 0; x <

dense_length; ++x) where x is a new counter variable introduced by the algorithm, and

dense_length is the total number of elements in the dense array.

When dealing with sublimation on a semi-dense loop, the new and old guard will often be the

same.

3.4.6.2 Pre-initialization

The pre-initialization loops can use either the original or the new loop guard. The original

guard must be used if the length of the dense array is not known yet (which will always be the

case for annihilation). In other cases, the new guard can be used. Which it will use then depends

on whether there is a fill-in value, and if it can be set using a single operation. For example, if the

fill-in value is zero, it is most efficient to initialize the whole dense array to that value using the

memset function in C. If that is not possible, the new guard must be used. If any of the statements

that need to be moved to the initialization loop use any of the original loop control variables, the

loop must also use the original loop guard.

The transformation algorithm will now generate statements for the initialization loop based

on the categories of the original statements, maintaining their relative order from the original

loop.

33

The first statements in the loop will be statements to set the data members are to their fill-in

value or their flags to false. If the fill-in was set in advance using memset, this is not necessary

and these statements are omitted

For statements that fall into category one, two or three where the value is being read, a

statement is generated that copies the value into the array that will replace it. If the statement

has more than one such value, it will generate more than one statement. These statements will

have the following form:

array[index_expression]->member = original_value;

Here, array is the dense data structure generated in the previous step that matches the data

member or other value represented by original_value. The index_expression will be either

the counter variable if one is available, or the expression that can be used to retrieve the original

dense index which was determined earlier (specified by a directive). If the element type of the

dense array is a structure, the member that matches the value being read is specified. Otherwise,

that part of the statement is omitted. An example of such a statement for the matrix

multiplication sample would be:

leftCellArray[x] = leftCell->Value;

If a validity flag is used, this statement will be immediately followed by a statement that sets

the validity flag associated with that value to true.

Category four statements, i.e. the linked list iteration statement, will be copied verbatim to

the initialization loop. The same is true for its guard (category five).

Category six statements uniquely guard some data member; these guards are copied to the

initialization loop.

Category seven statements are copied to the initialization loop if the original loop guard is

used; they are needed to ensure the same loop progression.

Category eight statements are left alone; these will not be used in the initialization loop.

If the new loop guard is used for the initialization loop and the original loop was sparse, an

additional guard of the following form will be added:

if(linked_list_expression != NULL && index_expression == counter)

Here index_expression is the expression used to retrieve the dense index specified using a

directive, and counter is the counter variable of the new loop guard. This guard simply checks if

the dense index of the current linked list position matches the loop index. The entire loop body

will be placed under this guard.

For the matrix transformation example, this leads to the following pre-initialization loop for

the leftCell value in the inner loop, using sublimation:

leftCellArray = malloc(sizeof(float) * dimensions);

memset(leftCellArray, 0, sizeof(float) * dimensions);

for(x = 0; x < dimensions; ++x)

{

 if(leftCell != NULL && leftCell->ColIndex < x)

 leftCell = leftCell->ColNext;

 if(leftCell != NULL &&

 leftCell->ColIndex == x &&

 leftCell->RowIndex == row)

 {

 leftCellArray[x] = leftCell->Value;

34

 }

}

Using annihilation, we get a slightly different loop for leftCell, and an additional loop for

right[x], which as noted earlier is necessary because the progression of x will change in the main

loop. Below is the loop for right[x], which uses a dynamically growing array.

rigthArrayLength = 100;

rightArray = malloc(sizeof(float*) * rightArrayLength);

newDimensions = 0;

// Initialisation loop

for(x = 0; x < dimensions; ++x)

{

 if(newDimensions >= rightArraySize)

 {

 leftCellArraySize *= 2;

 rightArray = realloc(

 rightArray, sizeof(float*) * rightArraySize);

 }

 if(leftCell != NULL && leftCell->ColIndex < x)

 leftCell = leftCell->ColNext;

 if(leftCell != NULL &&

 leftCell->ColIndex == x &&

 leftCell->RowIndex == row)

 {

 rightArray[newDimensions] = right[x];

 ++newDimensions;

 }

}

As said earlier, there are a few situations where the upper bound to use for the new loop

guard will not yet be known. A counter will be added to an initialization loop that counts the

number of valid elements to determine what this bound is (called newDimensions in this

sample). This counter can then also be used for the index_expression mentioned above. If there

are no pre-initialization loops (for instance because only post-initialization is needed) and it is

necessary to get this upper bound, a pre-initialization loop will be generated that does nothing

but get this count. The final value of this counter will be used as the upper bound for the new

loop guard.

Although no values from leftCell are being read, it is still necessary to use it in the

initialization loop to determine which values of the “right” array need to be used.

Sections 3.1 and 3.2 show additional annihilation examples where a count is used in the pre-

initialization loop.

All our examples so far have directly used the linked list expression (e.g. leftCell) in the

initialization loops. If there is more than one initialization loop, they will all depend on the initial

value of leftCell being what it was in the original code, so this is not safe. Instead, a new variable

will be used that is initialized to the value of the original linked list expression and substituted

for it in the initialization loops. After the final post-initialization loop – or directly after the main

loop if there is no post-initialization – the original linked list expression will be set to the value of

the copy so that its value after the transformed code matches that of the original code.

The algorithm for generating the pre-initialization loops is as follows:

function GeneratePreInitLoop(traversal, denseArray)

 initStatements = {}

35

 localVariables = {}

 length = GetLength(denseArray)

 arrayType = GetType(denseArray)

 source = GetSource(denseArray)

 sourceType = GetType(source)

 originalLoop = GetLoop(traversal)

 canBulkInit = false

 if source = GetLinkedListExpression(traversal)

 canBulkInit = true

 foreach dataMember in arrayType

 if GetFillIn(dataMember) <> 0

 canBulkInit = false

 endif

 next

 endif

 Add(localVariables, "arrayType *sourceArray;")

 Add(localvariables,

 "GetType(linkedListExpression) linkedListExpressionCopy;")

 Add(initStatements, "linkedListExpressionCopy = linkedListExpression");

 newGuard = false

 if length = -1

 # unknown length means dynamic array is needed

 Add(initStatements, "sourceArray = InitDynamicArray(sizeof(arrayType));"

 Add(localVariables, "int linkedListeDenseLength;")

 Add(initStatements, "linkedListDenseLength = 0;")

 Add(initStatements, GetLoopExpression(originalLoop));

 else

 Add(initStatements, "sourceArray = malloc(length * sizeof(arrayType));"

 if canBulkInit

 Add(initStatements, "memset(sourceArray, 0, length * sizeof(arrayType));"

 Add(initStatements, GetLoopExpression(originalLoop));

 else if LoopControlVariableNeeded(originalLoop)

 if IsSemiDense(originalLoop)

 Add(initStatements, GetLoopExpression(originalLoop))

 else

 # if the original loop is sparse, the original loop guard must be

 # used and bulk initialisation is not possible, we must abort

 return null

 endif

 else

 Add(initStatements,

 "for(sourceCounter = 0; sourceCounter < length; ++sourceCounter)")

 newGuard = true

 endif

 endif

 Add(initStatements, "{")

 # GetDensePosition returns an expression that can be used to determine

 # the dense array index; for a semi-dense loop or if the new loop guard

 # is used, this is the counter, otherwise it is the expression specified

 # by the DENSE_INDEX directive

 densePos = GetDensePosition(traversal)

 if length = -1

 # Insert statements to grow the dynamic array and initialise skipped

 # positions if necessary

 AddArrayGrowthStatements(initStatements, traversal, denseArray, densePos)

 Add(initStatements, "++linkedListDenseLength;")

 endif

 if not canBulkInit and source = GetLinkedListExpression(traversal)

 if arrayType is struct

36

 foreach dataMember in arrayType

 fillIn = GetFillIn(dataMember)

 if fillIn = null

 # set validity flag to false

 Add(initStatements, "sourceArray[densePos]->dataMemberValid = 0;")

 else

 Add(initStatements, "sourceArray[densePos]->dataMember = fillIn;")

 endif

 next

 else

 # if it is not a struct it must have a fill-in; if not there would have

 # been a flag so it would have been a struct

 fillIn = GetFillIn(dataMember)

 Add(initStatements, "sourceArray[densePos] = fillIn")

 endif

 endif

 if not IsSemiDense(originalLoop) and newGuard

 Add(initStatements,

 "if(linkedListExpression != NULL && densePos == sourceCounter) {"

 endif

 foreach statement in FlattenStatements(originalLoop)

 # Get the category this statement has for this source expression

 categories = GetStatementCategories(statement, source)

 foreach category in categories

 switch category

 case 1, 2, 3

 if GetAccessType(statement, source) = Read

 # Get the actual expression for this access, e.g. node->Value.

 accessExpression = GetAccessExpression(statement, source)

 accessExpression = Replace(accessExpression,

 "source", "sourceCopy")

 if not CanMoveToInitLoop(accessExpression)

 abort

 endif

 if arrayType is struct

 member = GetMemberForAccess(statement, source)

 Add(initStatements,

 "sourceArray[densePos]->member = accessExpression;")

 if HasFlag(member)

 # set validity flag to true

 Add(initStatements, "sourceArray[densePos]->memberValid = 1;"

 endif

 else

 Add(initStatements, "sourceArray[densePos] = accessExpression;")

 endif

 endif

 case 4, 5

 # It was already checked whether these can move to the init loop,

 # no need to do it again.

 Add(initStatements, Replace(statement, "linkedListExpression",

 "linkedListExpressionCopy"))

 case 6

 if CanMoveToInitLoop(statement)

 Add(initStatements, Replace(statement, "linkedListExpression",

 "linkedListExpressionCopy"))

 else

 abort

 endif

 case 7

37

 if not newGuard

 Add(initStatements, statement)

 endif

 case 8

 # no action

 endswitch

 next

 next

 if not IsSemiDense(originalLoop) and newGuard

 # end the if-statement

 Add(initStatements, "}")

 endif

 # end the loop

 Add(initStatements, "}")

 return [initStatements, localVariables]

function GeneratePreInitLoops(traversal, denseArrays)

 initStatements = {}

 localVariables = {}

 foreach denseArray in denseArrays

 if Contains(AccessType(denseArray), Read)

 [init, vars] = GeneratePreInitLoop(traversal, denseArray)

 if init = null

 return null

 endif

 AddRange(initStatements, init)

 # add variables eliminating duplicates (e.g. the linked list copy)

 AddRangeUnique(localVariables, localVariables)

 endif

 next

 return [initStatements, localVariables]

There are a few places in this code where it can return null. Here conditions 5 and 6 from

section 3.4.3 are checked because the code to which these conditions apply has finally been

identified. If the conditions fail, transformation is impossible after all so it is aborted.

3.4.6.3 Post-initialization

Post-initialization loops will always use the original loop guard. Its goal is to walk the linked

list precisely as the original loop did, and it will never take any action for the omitted values (fill-

in or validity checking is not relevant here), so using the new loop guard would serve no

purpose.

Every value that is written to in a category one or three statement will cause a statement to

be generated in the post-initialization loop of the following form:

original_value = array[index_expression];

For sublimation, index_expression is always the dense index expression indicated using a

directive. For annihilation, an additional counter is added to the loop whose value is used here.

Category four, five, six, seven and eight statements are treated the same way as for pre-

initialization loops.

The matrix multiplication example does not need post-initialization when doing either

sublimation or annihilation, but examples of post initialization have already been shown in

section 3.2.

This is the algorithm in pseudo code:

function GeneratePostInitLoop(traversal, denseArray)

38

 initStatements = {}

 localVariables = {}

 originalLoop = GetLoop(traversal)

 arrayType = GetType(denseArray)

 source = GetSource(denseArray)

 sourceType = GetType(source)

 Add(localVariables, "arrayType *sourceArray;")

 Add(localvariables, "sourceType linkedListExpressionCopy;")

 Add(initStatements, "linkedListExpressionCopy = linkedListExpression;");

 densePos = GetDensePosition(traversal)

 Add(initStatements, GetLoopExpression(originalLoop));

 Add(initStatements, "{")

 foreach statement in FlattenStatements(originalLoop)

 # Get the category this statement has for this source expression

 categories = GetStatementCategories(statement, source)

 foreach category in categories

 switch category

 case 1, 3

 if GetAccessType(statement, source) = Write

 # Get the actual expression for this access, e.g. node->Value.

 accessExpression = GetAccessExpression(statement, source)

 accessExpression = Replace(accessExpression, "linkedListExpression"

 , "linkedListExpressionCopy")

 if not CanMoveToInitLoop(accessExpression)

 return null

 endif

 if arrayType is struct

 member = GetMemberForAccess(statement, source)

 Add(initStatements,

 "accessExpression = sourceArray[densePos]->member;")

 else

 Add(initStatements, "accessExpression = sourceArray[densePos];")

 endif

 endif

 case 4, 5

 # It was already checked whether these can move to the init loop,

 # no need to do it again.

 Add(initStatements, Replace(statement, "linkedListExpression",

 "linkedListExpressionCopy"))

 case 6

 if CanMoveToInitLoop(statement)

 Add(initStatements, Replace(statement, "linkedListExpression",

 "linkedListExpressionCopy"))

 else

 abort

 endif

 case 7

 Add(initStatements, statement)

 case 2, 8

 # no action

 endswitch

 next

 next

 Add(initStatements, "}")

 return [initStatements, localVariables]

function GeneratePostInitLoops(traversal, denseArrays)

 initStatements = {}

 localVariables = {}

39

 foreach denseArray in denseArrays

 if Contains(AccessType(denseArray), Write)

 [init, vars] = GeneratePostInitLoop(traversal, denseArray)

 if init = null

 return null

 endif

 AddRange(initStatements, init)

 AddRangeUnique(localVariables, localVariables)

 endif

 next

 return [initStatements, localVariables]

3.4.6.4 Main loop transformation

Now the main loop can be transformed. First, the original loop guard for this loop is replaced

with the new loop guard. For category one, two and three statements, the values that were read

or written are replaced with their respective array values. So any occurrence of

linked_list_expression->data_member will be replaced with replacement_array[counter]

for category one, any occurrence of original_counter is replaced with

replacement_array[counter] for category two, and any occurrence of

original_array[original_counter] is replaced with replacement_array[counter] for

category three.

Category four and five statements are removed completely; they deal only with the linked list

which is no longer used in the transformed loop, so they serve no more purpose.

Category six statements are removed if a fill-in value is known, and there are no other

statements under this guard that would block this removal as indicated in section 3.4.4. If they

cannot be removed, the guard expression is replaced with a check against the validity flags of all

members used in the guarded statements.

Category seven statements are removed; they deal with flow control of the original loop so

they are no longer needed.

Category eight statements are left unaltered.

If the transformed loop was a sparse loop and validity flags are used or there are any category

8 statements not guarded by a category 6 guard, the entire loop body is wrapped in a guard that

checks the fill-in value or validity flag for all data members.

This leads to the following transformed inner loop for the matrix example when using

sublimation:

for(x = 0; x < dimensions; ++x)

{

 result[row][col] += leftCellArray[x] * right[x][col];

}

Because this was a semi-dense loop, the original and new loop statements are the same. The

reference to leftCell->Value has been replaced with a reference to leftCellArray[x] which was

filled in the pre-initialization loop.

For annihilation, the transformed loop looks like this:

for(x = 0; x < newDimensions; ++x)

{

 result[row][col] += leftCellArray[x] * rightArray[x][col];

}

Here the loop guard is different: the new upper bound that was determined in the pre-

initialization loops is used instead of the original. Again, references to leftCell->Value have been

40

replaced with a reference to leftCellArray[x], and this time references to right[x] have been

replaced with rightArray[x], which is the condensed copy of right that was created to allow for

the changed progression of the loop counter.

The pseudo code algorithm for this is as follows.

function GenerateGuardExpression(dataMembers, negateDataMembers, flagsOnly)

 newGuardExpression = ""

 first = true

 foreach dataMember in dataMembers

 if first

 first = false

 else

 newGuardExpression += " && "

 endif

 fillIn = GetFillIn(dataMember)

 if Contains(negateDataMembers, dataMember)

 newGuardExpression += "!("

 endif

 if GetType(linkedListExpressionArray) is struct

 if fillIn = null

 newGuardExpression +=

 "linkedListExpressionArray[counter]->dataMemberValid"

 else if not flagsOnly

 newGuardExpression +=

 "linkedListExpressionArray[counter]->dataMember == fillIn"

 endif

 else if not flagsOnly

 newGuardExpression += "linkedListExpressionArray[counter] == fillIn"

 endif

 if Contains(falseDataMembers, dataMember)

 newGuardExpression += ")"

 endif

 endif

 return newGuardExpression

function TransformMainLoop(traversal, dataMembers, denseArrays)

 transformedStatements = {}

 originalLoop = GetLoop(traversal)

 length = GetDenseLength(traversal)

 if length = -1

 # use computed length

 upperbound = "linkedListDenseLength";

 else

 upperbound = "length";

 endif

 Add(transformedStatements,

 "for(counter = 0; counter < upperbound; ++counter) {"

 if ContainsCategory7Statements(GetBody(originalLoop))

 # additional guard needed

 guard = GenerateGuardExpression(dataMembers, {}, false)

 Add(transformedStatements, "if(guard) {")

 endif

 foreach statement in FlattenStatements(originalLoop)

 # Get the category this statement has for this source expression

 categories = GetStatementCategories(statement, source)

 foreach category in categories

 switch category

 case 1, 2, 3

41

 # Get the actual expression for this access, e.g. node->Value.

 accessExpression = GetAccessExpression(statement)

 denseArray = GetDenseArrayFor(accessExpression, denseArrays)

 if arrayType is struct

 member = GetMemberForAccess(statement, accessExpression)

 newExpression = "denseArray[counter]->member"

 else

 newExpression = "denseArray[counter]"

 endif

 Add(transformedStatements,

 Replace(statement, accessExpression, newExpression)

 case 4, 5, 7

 # No action

 case 6

 # find data members used when the guard expression evaluates

 # true or false.

 trueDataMembers = DataMembersForCompound(GetTruePart(statement))

 falseDataMembers = DataMembersForCompound(GetFalsePart(statement))

 # iterate over those data members used in true or false,

 #but not in both.

 uniquelyGuardedMembers = (trueDataMembers union falseDataMembers –

 trueDataMembers intersect falseDataMembers)

 # If there are no cat. 7 statements guarded, only flags are

 # needed, not fill in checks.

 flagsOnly = Count(GetCategory7Statements(GetTruePart(statement) union

 GetFalsePart(statement)) = 0

 newGuardExpression = GenerateGuardExpression(uniquelyGuardedMembers,

 falseDataMembers, flagsOnly)

 if newGuardExpression <> ""

 Add(transformedStatements, "if(newGuardExpression)"

 endif

 case 8

 Add(transformedStatements, statement)

 endswitch

 next

 next

 if ContainsCategory7Statements(GetBody(originalLoop))

 # end the if statement

 Add(transformedStatements, "}"

 endif

 # end the loop

 Add(transformedStatements, "}"

 return transformedStatements

3.4.6.5 The transformation as a whole

To do a complete transformation of the loop, the generation of pre-initialization and post-

initialization loops and transforming the main loop are combined leading to a set of statements

from all three that constitute the result of the transformation. Besides just performing the

operations from the previous three subsections, some additional steps may be necessary. If

there is a post-initialization loop for an array that has no pre-initialization, an allocation

statement for that array still needs to be created before the transformed main loop. If there are

no pre-initialization loops and the dense length is unknown (for instance with annihilation), an

empty initialization loop must be generated that determines the dense length.

The following function is used to perform the transformation for step six. Its output is a list of

generated variables and a list of statements containing all pre-initialization, post-initialization,

and transformed main loop statements.

42

function TransformLoop(traversal, dataMembers, denseArrays)

 linkedListExpression = GetLinkedListExpression(traversal)

 localVariables = {}

 preInitStatements = {}

 postInitStatements = {}

 transformedStatements = {}

 [preInitStatements, vars] = GeneratePreInitLoops(traversal, denseArrays)

 if preInitStatements = null

 return null

 endif

 AddRangeUnique(localVariables, vars)

 [postInitStatements, vars] = GeneratePostInitLoops(traversal, denseArrays)

 if postInitStatements = null

 return null

 endif

 AddRangeUnique(localVariables, vars)

 length = GetDenseLength(traversal)

 if length = -1 and preInitStatements is empty

 # need loop to determine length

 [preInitStatements, vars] = GeneratePreInitLoop(traversal, null)

 AddRangeUnique(localVariables, vars)

 length = "linkedListDenseLength"

 endif

 foreach denseArray in denseArrays

 accessTypes = GetAccessTypes(denseArray)

 if Contains(accessTypes, Write) and not Contains(accessTypes, Read)

 # this means the array is used in the transformed loop and post-init

 # loops but not the pre-init loops, so we need to allocate it seperately

 arrayType = GetType(denseArray)

 Add(preInitStatements, "denseArray = malloc(length * sizeof(arrayType))

 endif

 next

 # Add a statement to set the linked list variable to its final

 # value if needed

 if ReadAfterLoop(loop, linkedListExpression)

 Add(postInitStatements, "linkedListExpression = listListExpressionCopy")

 endif

 transformedStatements = TransformMainLoop(traversal, dataMembers,

 denseArrays)

 result = preInitStatements

 AddRange(result, transformedStatements)

 AddRange(result, postInitStatements)

 return [result, localVariables]

3.4.7 Moving the initialization loops

In order to further optimize the code, it can be beneficial to move the initialization loops

away from the main loop. We can observe the following basic rules:

1. If a block of code does not write to any of the expressions read in a pre-initialization

loop A, and does not read any expressions written to in A, then A can be moved ahead

of the block. Conversely, if A is a post-initialization loop is can be moved after the

block under the same conditions.

2. If an initialization loop A is contained in an outer loop O, and all variables read in A

are invariant over O, then A can be moved out of O. This is called trivial loop

extraction.

Whenever this section mentions “initialization loop”, it means all statements such as

assignment statements and variable copying statements associated with the actual loop as well.

43

As we saw in the previous section, a post-initialization loop for an array that has no

corresponding pre-initialization loop will also create an additional allocation statement before

the main array. This statement can be moved in precisely the same way as the pre-initialization

loops.

There are two situations where, even if the conditions for the second rule are not met, we can

still move an initialization loop out of a containing loop.

The first situation is when the expressions that are not root invariant all have the same root

non-invariant expression (see section 3.4.3) is the counter of the outer loop. Consider the

following example, which performs the algorithm from one of the examples in section 3.1 on a

number of linked lists instead of just one.

int product[M];

int x;

for(x = 0; x < M; ++x)

{

 product[x] = 1;

 /***DENSE_INDEX(node[x], node[x]->Index)***/

 /***DENSE_DIMENSION(node[x], 10)***/

 while(node[x] != NULL)

 {

 product[x] *= node[x]->Value;

 node[x] = node[x]->Next;

 }

}

In this example, node[x] is the linked list expression, leading to the following code after initial

transformation:

int product[M];

int *nodeArray;

struct Node *nodeCopy;

int x, y;

for(x = 0; x < M; ++x)

{

 product[x] = 1;

 // pre-initialisation

 nodeArray = malloc(10 * sizeof(int));

 nodeCopy = node[x];

 for(y = 0; y < 10; ++y)

 {

 if(nodeCopy != NULL && nodeCopy->index == x)

 {

 nodeArray[y] = nodeCopy->Value;

 nodeCopy = nodeCopy->Next;

 }

 else

 nodeArray[y] = 1; // Fill-in value

 }

 // Transformed main loop

 for(y = 0; y < 10; ++y)

 {

 product[y] *= nodeArray[y];

 }

 node[x] = nodeCopy;

}

44

The pre-initialization loop (which as was said earlier includes the two statements before the

actual loop) in this sample is not invariant over the outer loop, because it uses node[x], which

depends on x, which is not loop invariant. The root non-invariant expression for node[x] is x, and

because x is the counter for the outer loop, we can still move the loop by duplicating the outer

loop structure and adding a dimension to nodeArray that represents the outer loop iterations.

This leads to the following code after moving the loop.

int product[M];

int **nodeArrayArray;

struct Node **nodeArray2;

struct Node *nodeCopy;

int x, y;

// pre-initialisation

nodeArrayArray = malloc(M * sizeof(int*));

nodeArray2 = malloc(M * sizeof(struct Node*));

for(x = 0; x < M; ++x)

{

 nodeArrayArray[x] = malloc(10 * sizeof(int));

 nodeCopy = node[x];

 for(y = 0; y < 10; ++y)

 {

 if(nodeCopy != NULL && nodeCopy->index == x)

 {

 nodeArrayArray[x][y] = nodeCopy->Value;

 nodeCopy = nodeCopy->Next;

 }

 else

 nodeArrayArray[x][y] = 1; // Fill-in value

 }

 nodeArray2[x] = nodeCopy;

}

for(x = 0; x < M; ++x)

{

 product[x] = 1;

 // Transformed main loop

 for(y = 0; y < 10; ++y)

 {

 product[y] *= nodeArrayArray[x][y];

 }

 node[x] = nodeArray2[x];

}

The procedure for this is simple: create a new loop before (or after with a post-initialization

loop) the outer loop that uses the same loop guard as the outer loop. Add a dimension to the

array used in the initialization loop. Move the initialization loop into the new loop, modifying all

references to the array to include this new dimension. Then modify all references to this array in

the transformed main loop as well. This is called simple loop extraction.

In addition, an array is created to hold the final values of nodeCopy so that these can be

assigned to node[x] after the transformed loop. If it can be determined that node[x] is not read

after the loop this may be omitted.

For a post-initialization loop, a statement must be added before the outer loop that allocates

the array.

45

While it may seem at first a bad idea to extract the loop like this – after all, it increases the

amount of work because it introduces an extra loop – it may lead to additional optimization

opportunities for the main loop making it beneficial in the long run.

The second situation in which we can still extract the loop is if the root non-invariant

expression is itself a linked list candidate for the outer loop. In this case we can start a process

called linked list loop extraction.

For this process, all the previous steps are performed to transform the outer loop exactly as

before. However, in addition to the normal creation of an array for data members, an additional

dimension is added to the array for the initialization loop we are moving, allowing us to move

the loop into the outer loop is initialization loop in a similar fashion as above.

This situation occurs in the matrix multiplication example. In the previous section, we saw

the initialization loop and transformed main loop for the innermost loop when performing

sublimation. If we put those loops into context in the middle loop, we get the following (the

outermost loop has been omitted):

for(row = 0; row < dimensions; ++row)

{

 if(leftRow != NULL && leftRow->RowIndex < row)

 leftRow = leftRow->Next;

 if(leftRow != NULL && leftRow->RowIndex == row)

 {

 leftCell = leftRow->Cell;

 leftCellArray = malloc(sizeof(float) * dimensions);

 memset(leftCellArray, 0, sizeof(float) * dimensions);

 leftCellCopy = leftCell;

 for(x = 0; x < dimensions; ++x)

 {

 if(leftCellCopy != NULL && leftCellCopy->ColIndex < x)

 leftCellCopy = leftCellCopy->ColNext;

 if(leftCellCopy != NULL &&

 leftCellCopy->ColIndex == x &&

 leftCellCopy->RowIndex == row)

 {

 leftCellArray[x] = leftCellCopy->Value;

 }

 }

 for(x = 0; x < dimensions; ++x)

 {

 result[row][col] += leftCellArray[x] * right[x][col];

 }

 free(leftCellArray);

 }

}

Note that since leftCell is a local variable that is not read after the loops it is not necessary to

set it to its final value after the transformed main loop.

In this case, the initialization loop we want to move uses one value that is not invariant over

the outer loop, namely leftCellCopy, which depends on leftCell, which depends on leftRow->Cell

which depends on leftRow which is not invariant. The variable leftRow is a pointer to a

RowHead structure, and step one had identified RowHead as a potential linked list candidate.

46

The algorithm will now check to see if this loop is a candidate linked list traversal for leftRow,

checking the list returned by step two. This is indeed the case here, so we proceed with

evaluating the conditions from step three, which are all met. Step four will identify one data

member for this loop, namely Cell. Since data dependence analysis shows that the value of Cell is

used only in the initialization loop, it is not necessary to create a separate array for it. Since the

final value of leftCellCopy is also not used, no array for that is needed either. So step five does

nothing, and the algorithm for step seven will extend leftCellArray with an extra dimension. Step

six will perform transformation as usual, and afterwards the initialization loop for leftCell will be

moved into a new initialization loop created for leftRow, adjusting it accordingly. Since there are

no data members for leftRow outside of the leftCell initialization loop, the fill-in value for leftCell

is assumed to apply here, which means the second if-statement in the loop (which is category

six) can be removed from the transformed loop. Creation and initialization of the array for

leftCell is done outside that if-statement in the leftRow initialization loop because it also needs

to be done for the fill-in case. Note that if direct initialization of the fill-in value using memset as

is done here is not possible, an else-clause must be added to this if-statement that fills the array

with fill-in values.

This leads to the following code after transformation:

leftCellArrayArray = malloc(sizeof(float*) * dimensions);

leftRowCopy = leftRow;

for(row = 0; row < dimensions; ++row)

{

 if(leftRowCopy != NULL && leftRowCopy->RowIndex < row)

 leftRowCopy = leftRowCopy->Next;

 leftCellArrayArray[row] = malloc(sizeof(float) * dimensions);

 memset(leftCellArrayArray[row], 0, sizeof(float) * dimensions);

 if(leftRowCopy != NULL && leftRowCopy->RowIndex == row)

 {

 leftCell = leftRowCopy->Cell;

 leftCellCopy = leftCell;

 for(x = 0; x < dimensions; ++x)

 {

 if(leftCellCopy != NULL && leftCellCopy->ColIndex < x)

 leftCellCopy = leftCellCopy->ColNext;

 if(leftCellCopy != NULL &&

 leftCellCopy->ColIndex == x &&

 leftCellCopy->RowIndex == row)

 {

 leftCellArrayArray[row][x] = leftCellCopy->Value;

 }

 }

 }

}

for(row = 0; row < dimensions; ++row)

{

 for(x = 0; x < dimensions; ++x)

 {

 result[row][col] += leftCellArrayArray[row][x] * right[x][col];

 }

47

}

// Cleanup

for(row = 0; row < dimensions; ++row)

 free(leftCellArrayArray[row]);

free(leftCellArrayArray);

In this case it is immediately clear what the benefit of doing this is: although we have

increased the overhead of initialization by adding an extra loop, the transformed loop now looks

like a normal, dense matrix multiplication algorithm which allows further optimizations.

Note that when doing annihilation we can perform this step using annihilation as well in

exactly the same manner as described in the previous sections.

To complete the transformation of the matrix multiplication example with sublimation, we

also want to move this leftRow initialization loop out of the outermost loop. Since it is

completely invariant, it can be moved out of the loop using trivial loop extraction. Note that the

cleanup code will be moved out of the loop as well. This leads to the code in Appendix A. There

you can also find the completely transformed code when using annihilation.

Step seven can be represented using the following pseudo code.

function GetLoopIterationCount(loop)

 loopControlStatements = GetLoopControlStatements(loop, null)

 # returns -1 if there is no directive

 length = GetLengthFromDirective(loop)

 if length = -1

 # these are the conditions under which the upper bound can be determined

 # and thus the needed array size

 if Count(loopControlStatements) = 1 and

 loopControlStatements[0] like "x = x + 1" and

 GetLoopCondition(loop) like "x < upperBound"

 length = upperBound

 endif

 endif

 return length

function AddDimension(declaration, length)

 type = GetType(declaration)

 name = GetName(declaration)

 newDeclaration = "type *nameArray;"

 allocation = "nameArray = malloc(length * sizeof(type*));"

 return [newDeclaration, allocation]

Loop extraction for when the non-invariant value is the counter.

As mentioned, initLoop includes the malloc statement for the loop,

and can also be just a malloc statement.

function DoSimpleLoopExtraction(outerLoop, initLoops, localVariables)

 preInitStatements = {}

 postInitStatements = {}

 transformedStatements = {}

 if IsLoopControlTrivial(outerLoop)

 length = GetLoopIterationCount(outerLoop)

 if length = -1

 name = GenerateUniqueName()

 # add a pre-init loop to count the length

 Add(localVariables, "int nameArrayLength;")

 Add(preInitStatements, "nameArrayLength = 0;")

 Add(preInitStatements, GetLoopGuard(outerLoop))

 Add(preInitStatements, "{ ++nameArrayLength; ")

48

 AddRange(preInitStatements, loopControlStatements)

 Add(preInitStatements, "}")

 length = "nameArrayLength"

 endif

 foreach initLoop in initLoops

 RemoveStatements(outerLoop, initLoop)

 # get the control variable from the outer loop that the init loop is

 # using

 controlVariable = GetDependantControlVariable(initLoop)

 # get the declaration statement for the array used by this init loop

 initVariables = GetInitVariables(initLoop)

 newNames = {}

 foreach variable in initVariables

 declaration = GetDeclaration(localVariables, variable)

 # check if the declaration is already processed for this loop; this

 # can happen e.g. if an pre- and post-init loop share an array.

 if not DeclarationIsAlreadyProcessed(declaration, outerLoop)

 # the original declaration in localVariables is replaced

 [declaration, allocation] = AddDimension(declaration, length)

 Add(preInitStatements, allocation)

 endif

 Add(newNames, GetName(arrayDeclaration))

 Endif

 if IsPostInit(initLoop)

 initStatements = postInitStatements

 else

 initStatements = preInitStatements

 endif

 Add(initStatements, GetLoopGuard(outerLoop))

 # swap in the array for all statements of the init loop

 foreach name in newNames

 originalName = name – "Array"

 initLoop = Replace(initLoop, originalName, "name[controlVariable]")

 outerLoop = Replace(outerLoop, originalName, "name[controlVariable]")

 endif

 Add(initStatements, initLoop)

 Add(initStatements, "}")

 # remove the init loop statements from the outer loop

 RemoveRange(outerLoop, initLoop)

 next

 result = preInitStatements

 AddRange(result, outerLoop)

 AddRange(result, postInitStatements)

 return result

 else

 return null

 endif

generates an init loop for the traversal in outerloop placing the

specified statements in the loop at their proper relative position

or at the end if they are new statements. InitStatements typically

is an init loop that is being extracted which means these statements

are not actually in outerLoop anymore since they were removed earlier.

function GenerateExtractedLoop(outerLoop, initLoop, length, newArrayNames)

 result = {}

 Add(result, GetLoopGuard(outerLoop))

 traversal = GetTraversal(outerLoop)

 densePos = GetDenseIndex(traversal)

 allocation = GetAllocationStatements(initLoop)

49

 AddRange(result, allocation)

 # Generate the memset statement or the loop needed to set

 # the entire array to the fill-in value. This is needed because

 # the init loop we are moving might be guarded so cannot be guaranteed

 # to take care of the fill-in for us.

 GenerateFillInStatements(result, initLoop)

 foreach statement in FlattenStatements(GetBody(outerLoop))

 # only loop control and linked list iteration statements are needed

 switch GetCategoryForLoopExtraction(statement, initLoop)

 # cat 1 is the init loop statements to be moved, with the exclusion

 # of statements to allocate and fill-in initialisation of the array,

 # the rest is the same as for regular init loop generation

 case 1, 4, 5, 7

 Add(result, statement)

 endswitch

 next

 return result

outerLoop is completely original and untransformed

transformedOuterLoop is the outer loop after regular linked list

transformation; the init loops have already been removed. It is passed

to this function so the new array names can be swapped in.

function DoLinkedListLoopExtraction(outerLoop, initLoops, localVariables,

 transformedLoop)

 preInitStatements = {}

 postInitStatements = {}

 length = GetLoopIterationCount(outerLoop)

 if length = -1

 name = GenerateUniqueName()

 # add a pre-init loop to count the length

 Add(localVariables, "int nameArrayLength;")

 Add(preInitStatements, "nameArrayLength = 0;")

 initStatements = { "++nameArrayLength;")

 # create empty loop purely for the counter

 loop = GenerateExtractedLoop(outerLoop, initStatements, -1, null)

 Add(preInitStatements, loop)

 length = "nameArrayLength"

 endif

 foreach initLoop in initLoops

 # get the variables that this loop is initialising

 initVariables = GetInitVariables(initLoop)

 newNames = {}

 foreach variable in initVariables

 declaration = GetDeclaration(localVariables, variable)

 # check if the declaration is already processed for this loop; this

 # can happen e.g. if an pre- and post-init loop share an array.

 if not DeclarationIsAlreadyProcessed(declaration, outerLoop)

 [arrayDeclaration, allocation] = AddDimension(declaration, length)

 Add(preInitStatements, allocation)

 endif

 Add(newNames, GetName(arrayDeclaration))

 endif

 if IsPostInit(initLoop)

 initStatements = postInitStatements

 else

 initStatements = preInitStatements

 endif

 traversal = GetTraversal(outerLoop)

 densePos = GetDenseIndex(traversal)

50

 foreach newArrayName in newNames

 originalName = newArrayName - "Array"

 initLoop = Replace(initLoop, originalName, "newArrayName[densePos]")

 # update the transformed loop as well

 transformedOuterLoop = Replace(transformedOuterLoop, originalName,

 "newArrayName[densePos]")

 next

 loop = GenerateExtractedLoop(outerLoop, initLoop, length, newNames)

 AddRange(initStatements, loop)

 next

 return [preInitStatements, postInitStatements]

function ExtractInitLoops(outerLoop, candidateTraversals, localVariables)

 # get all pre- and post-init loops and associated code

 # in the loop

 initLoops = GetInitLoops(outerLoop)

 candidateTraversal = null

 loopExtractionCandidates = {}

 simpleExtractionCandidates = {}

 trivialExtractionCandidates = {}

 # unmoveableLoops is used only for simple extractions; a loop that ends up

 # in this collection because it uses more than one control variable might

 # still be moveable by linked list loop extraction.

 unmoveableLoops = {}

 foreach initLoop in initLoops

 # get the variables that this init loop is initialising

 initVariables = GetInitVariables(initLoop)

 nonInvariantVariableCount = 0

 foreach variable in initLoop

 if not (Contains(initVariables) or IsLoopInvariant(outerLoop, variable))

 nonInvariantVariableCount += 1

 rootExpression = GetRootNonInvariantExpression(variable)

 # see if the outerloop has a candidate traversal for the type of this

 # variable, the member and statement do not matter

 traversal = GetItem(candidateTraversals,

 [outerLoop, [GetType(rootExpression), *], *])

 # the outer loop may have more than one traversal; we consider only

 # one.

 if traversal <> null and candidateTraversal = null or

 traversal = candidateTraversal

 traversal = candidateTraversal

 Add(loopExtractionCandidates, initLoop)

 else

 if not Contains(unmoveableLoops, initLoop)

 foreach controlVariable in GetLoopCondition(outerLoop)

 if rootExpression = controlVariable

 if Contains(simpleExtractionCandidates, [initLoop, *])

 # simpe extraction is impossible, linked list loop extraction

 # may still be possible

 Add(unmoveableLoops, initLoop)

 Remove(simpleExtractionCandidates, initLoop)

 else

 Add(simpleExtractionCandidates, [initLoop, controlVariable])

 endif

 else

 # loop extraction is guaranteed impossible

 Add(unmoveableLoops, initLoop)

 Remove(simpleExtractionCandidates, initLoop)

 Remove(loopExtractionCandidates, initLoop)

51

 endif

 next

 endif

 next

 if nonInvariantVariableCount = 0

 Add(trivialExtractionCandidates, initLoop)

 endif

 next

 # now all init loops that can do simple loop extraction or linked list loop

 # extraction are known. Only one type of extraction is performed, then true

 # is returned so that the caller knows changes were made and it can

 # check the loop again

 if Count(loopExtractionCandidates) > 0

 return TransformTraversal(candidateTraversal, loopExtractionCandidates,

 else if Count(simpleLoopExtractionCandidates) > 0

 outerLoop = DoSimpleLoopExtraction(outerLoop,

 simpleLoopExtractionCandidates,

 localVariables)

 return true

 else if Count(trivialLoopExtractionCandidates) > 0

 return DoTrivialLoopExtraction(outerLoop, trivialLoopExtractionCandidates)

 endif

 return false

For simplicity, the code for trivial loop extraction and loop movement (when the first

condition from the beginning of this section is met) is not provided, since these cases are both

trivial to implement.

The main function for this step is ExtractInitLoops. It finds all init loops that can be extracted

using linked list loop extraction, simple loop extraction or trivial loop extraction. It will then

perform one of those transformations, on all applicable initialization loops, and return. The

caller can use the return value to determine if changes were made. If so, ExtractInitLoops can be

called again to analyze the modified situation and see if more loops can be extracted using

perhaps a different technique.

Linked list loop extraction is done by calling on the main transformation since it is a linked

list transformation just like we have done before only with some extra steps. This main

transformation function is given in the next section, which includes some of the code for this

step.

3.4.8 Putting it all together

In the previous sections, pseudo code is given for the individual steps, defining functions that

perform the steps and return the results given by that step. What is left then is a function that

calls these functions in the correct order so it performs the entire transformation. This is given

below.

function TransformTranslationUnit(translationUnit)

 candidateStructs = FindCandidateStructs(translationUnit)

 foreach function in translationUnit

 do

 candidateTraversals = FindCandidateTraversals(function, candidateStructs)

 # get the candidate with the highest nesting level

 if Count(candidateTraversals) > 0

 candidateTraversal = GetMostNestedCandidate(candidateTraversals)

 if not TransformTraversal(candidateTraversal)

 # transformation was unsuccessful, make sure not to try it again

 MarkProcessed(candidateTraversal)

52

 endif

 endif

 loop while Count(candidateTraversals) > 0

 # do the simple movement for loops matching the first condition

 # for init loop movement.

 foreach initLoop in function

 MoveInitLoop(function, initLoop)

 next

 next

function TransformTraversal(traversal, initLoopsToMove, candidateTraversals)

 if EvaluateCandidateTraversal(traversal)

 loop = GetLoop(traversal);

 dataMembers = FindDataMembers(traversal)

 foreach dataMember in dataMembers

 # remove those data members that are only used in the init loops

 # we are going to be moving by linked list loop extraction.

 if DataMemberOnlyUsedInInitLoops(dataMember, initLoopsToMove)

 Remove(dataMembers, dataMember)

 endif

 next

 if Count(dataMembers) = 0 and Count(initLoopsToMove) = 0

 # nothing to do

 return false

 endif

 denseArrays = GenerateDenseDataStructures(traversal, dataMembers)

 function = GetFunction(traversal)

 [result, vars] = TransformLoop(traversal, dataMembers, denseArrays)

 if result = null

 return false

 endif

 AddDeclarations(function, vars)

 # perform linked list loop extraction

 if initLoopsToMove <> null

 [pre, post] = DoLinkedListLoopExtraction(loop, initLoopsToMove,

 GetDeclarations(function), result)

 endif

 transformed = Concat(pre, result, post)

 ReplaceStatements(function, loop, transformed)

 # See if the loop was contained inside another loop

 do

 madeChanges = false

 outerLoop = GetContainingLoop(loop)

 if outerLoop <> null

 localVariables = GetDeclarations(function)

 madeChanges = ExtractInitLoops(outerLoop, candidateTraversals,

 localVariables)

 endif

 loop while madeChanges

 return true

 endif

 return false

TransformTranslationUnit is the main function driving the transformation of a single

translation unit (a pre-processed C code file). It will find the candidate traversals using steps one

and two, and then call TransformTraversal which performs the remaining steps. Step seven, as

was noted in the previous section, can recursively call TransformTraversal to perform linked list

loop extraction on a containing loop.

53

As a final step some cleanup can be performed on the code. The transformation can leave

statements in the code that have no effect anymore after transformation; these can be found

using data dependence analysis and be safely removed.

3.5 Normalization

As indicated earlier, before any of the transformation steps above take place, the code needs

to be normalized so that it can be reliably transformed and analyzed. Normalization consists of

several parts which are covered in the following sections. Since the separate normalization

techniques can affect other techniques it may be necessary to repeat normalization until no

further changes occur in the code.

Most of the examples in this thesis have not had full normalization applied to ease readability.

3.5.1 Aliasing

When trying to do any kind of analysis of C code, pointer aliasing forms a major obstacle in

reasoning about it. Pointer analysis has been the subject of intense study in the past decades,

and there are a great number of different approaches. These approaches can be categorized by

flow-sensitivity and context-sensitivity. A flow-insensitive algorithm ignores the order of

statements when it calculates pointer information, whereas a flow-sensitive algorithm takes

control flow within a procedure into account. A context-insensitive algorithm does not

distinguish the different calling contexts of a procedure, whereas a context-sensitive does. Hind

and Pioli do a comparative analysis of several pointer analysis methods in [9], and Hind

examines some of the remaining problems in [10]. An introduction to possible applications of

pointer analysis is given in [5].

Especially context-sensitive pointer analysis, which is required to solve the global aliasing

problem, can be extremely time-consuming and generally grow exponentially with the size of

the program, a problem which is compounded in the presence of function pointers [11]. In [12;

13] Zhu and Calman give an approach that can efficiently do a whole program pointer analysis.

Although global aliasing is an extremely hard problem, how to deal with aliasing when it

involves only the scope of a single function is relatively straight-forward and the normalization

step can take some steps to easy data dependence analysis, which are outlined below.

A variable is an alias for another variable if modifications of either the original or the alias

would affect the other. This means that an alias must necessarily always be a pointer (except

when pointers are cast to numerical values). Aliases can be created when a pointer to an existing

variable is assigned to a variable, or when an existing pointer is copied to a new variable. By

looking for assignments of a variable that has a pointer type we can be recognize where aliases

are created. In the case of using a higher level of indirection, e.g. x = &y, any change in y will

affect x and any change in x where x is dereferenced at least once will affect y. In the case of the

same level of indirection, e.g. x = y, any change in either x or y where they are dereferenced

affects the other.

In either case, we will normalize all uses of x and the aliased value &y or just y to use the

identical expression, up to the point where x itself (not dereferenced) is modified again. For the

same level of indirection, a change in y will also break the aliasing and thus be the end of the

replacements, except if y is changed to a value that also depends on y (for instance, y = y + 1), we

should try to re-express x in the new value of y.

A special case is the situation where a variable is assigned the result of a pointer

manipulation, e.g. x = y + 5 if x and y are both pointers. Although you are not directly aliasing

y, there is a case of aliasing here because it is now possible to access the memory location y+5 in

54

two ways. In other words, x has become equivalent to saying y+5. Therefore, we will also

normalize these occurrences. In this case, if y is modified, the same rules apply as above, so we

must try to re-express the value if the new value of y depends on y, or break the relationship if it

is changed independently.

The left-hand side of the assignment need not be a variable, but can be any l-value that has a

suitable pointer type. For instance in the situation that *x = &y, we must consider *x an alias for

y, and treat it as such. In this case, changing x as well as *x will break the relation.

In C it is unfortunately possible to cast a pointer to an integer, and then later back to a

pointer, possibly after manipulating it. If such a cast occurs, we cannot safely determine aliases

and must assume safety if we are in a SAFE_CODE region.

As can be clearly seen, aliasing is a very complex problem, and solving it in its entirety is

beyond the scope of this thesis, especially considering that if you want to prove that the

transformation is safe, you must also prove that no corner cases exist in which a potentially

unsafe alias is undetected and left in the code. To this end we will always assume that any code

marked safe using directives simply does not use any unsafe aliasing to begin with, and if it does

transformation would either fail or lead to semantically incorrect results.

Nevertheless, in the future it will be worthwhile to investigate how this transformation can

be improved by applying some of the more powerful pointer analysis methods. Some of the

transformation steps, such as locating the linked list iteration statement in Section 3.4.2, which

are expressed in terms of syntax in this thesis, can possibly be expressed in terms of pointer

dependencies. Additionally, context-sensitive pointer analysis can allow us to actually verify

some of the conditions for SAFE_CODE regions, and would also allow us to deal with function

calls more effectively.

3.5.2 Loop structure normalization

In order to make processing loops simpler, for-loops will be transformed into while-loops. A

for loop has the following structure:

for(initialisation; condition; loop-expression)

{

 /* … */

}

This can be transformed to a while-loop with the following structure:

initialisation;

while(condition)

{

 /* … */

 loop-expression;

}

Again it must be noted that this has not been done in the examples in this thesis for

readability.

Do-loops and existing while-loops will be left unchanged.

3.5.3 Expression normalization

As indicated in sections 3.4.2 and 3.4.3, it is important to be able to consider semantic

equivalence of expressions in order to correctly determine whether values are used in a safe

way. By normalizing expressions used in the code, equivalent expressions take the same form so

they can be more easily detected.

55

The following is a list of normalizing steps that could be taken (note that this list is probably

not exhaustive):

• Remove any unnecessary parentheses, e.g. (x) becomes x if the parenthesis do not

affect evaluation order.

• Pre-compute the value of any constant expressions, e.g. 5+7 becomes 12. The values of

constant identifiers (variables declared as const) will be substituted as well.

• Remove any zero-effect operations. This includes unnecessary

referencing/dereferencing (e.g. &*x becomes x), addition of zero (e.g. x+0 becomes x),

multiplication or division by one (e.g. x*1 and x/1 become x)

• Transform left and right bit-shift operations into multiplications and divisions

respectively, e.g. x<<1 becomes x*2.

• Pointer arithmetic followed by dereferencing is transformed into array indexing, e.g.

*(pointer + x) becomes pointer[x].

• Distribute any distributive operators.

• Normalize the operand order of commutative operators. For array indexing, we make

sure the pointer variable comes first (e.g. x[pointer] becomes pointer[x]) and for

all other commutative operators we sort the operands alphabetically, e.g. y+x

becomes x+y.

• Expand shorthand operators, e.g. ++x becomes x = x+1, and x *= 2 becomes x = x *

2. The special case for x++ can be solved by introducing temporaries.

• Extract operations with side effects into separate statements, e.g. if((x=x+1) > y)

becomes x=x+1; if(x > y)

• Etc.

The steps in this list are repeated until no more changes are possible.

There are some more esoteric expressions that are actually equivalent that cannot be reliably

detected. You can, for instance, access a struct member using pointer arithmetic. We must once

again assume that this is not done in sections marked as safe.

Some of these modifications can have performance implications (for instance swapping shift

operations with multiplications). In that case the original form can be stored and put back in

after the transformation has completed.

3.6 Transformation directives

In several of the preceding sections we have made mention of transformation directives, and

we have also seen some examples of them.

Transformation directives serve to fill in the gaps where the transformation cannot discover

the required information automatically by analyzing the code. Because the directives often apply

to only a small section of the code they must be part of the source code itself, and cannot be

replaced with e.g. command-line parameters for the compiler. A hypothetical implementation of

this transformation will look for these directives in the source and use them accordingly.

Unlike some programming languages (such as C#), C does not have built-in support for

attributes or directives. Instead, we will use specially formatted comments to represent them.

Comments are well suited to this because they do not interfere with the ability of a regular

compiler to process the code. Alternative approaches such as #pragma directives might clash

with those used by another compiler and may require conditional compilation to ensure cross-

platform functioning; comments do not have these drawbacks.

A transformation directive will be any text between /*** and ***/. The directive is case-

sensitive, and any white space within the directive comment is insignificant, unless it is within a

56

string literal that serves as an argument for the directive. If the text between those delimiters

cannot be understood as a directive, it must be assumed it is a normal comment and be ignored.

Below is a list of some of the directives that would be used by our transformation. This is not

meant to be a complete list.

SAFE_CODE

By default, the transformation assumes all code is unsafe to transform unless

explicitly marked safe. All code following this directive is considered to be safe, until

an UNSAFE_CODE directive is encountered. Code between a SAFE_CODE and

UNSAFE_CODE directive is called a safe code section. A safe code section is assumed

not to violate any of the rules that cannot be automatically checked; it is still checked

for violations of the other rules.

UNSAFE_CODE

This directive indicates that all code following this directive is unsafe, until a

SAFE_CODE directive is encountered. Code between a SAFE_CODE and

UNSAFE_CODE directive is called a safe code section.

SAFE_LOOP

This indicates that the loop directly following the directive may be transformed,

even if it is not in a safe code section. If the loop contains nested loops, they are not

considered safe as well.

UNSAFE_LOOP

This indicates that the loop directly following the directive may not be transformed,

even if it is in a safe code section. This directive does not affect loops nested in the

loop it applies to.

DENSE_INDEX(linked_list_expression, index_expression)

This applies to the loop directly following it and the indicated linked_list_expression.

It indicates that index_expression can be used inside the loop body to retrieve the

original dense index. Both parameters can be any valid C expression.

DENSE_DIMENSIONS(linked_list_expression, dimension_expression)

This directive applies to the loop directly following it and the indicated

linked_list_expressions. It indicates that dimension_expression can be used to

determine the dimensions of the original dense data.

FILL_IN(linked_list_expression[, fill_in_value])

This directive applies to the loop directly following it and the indicated

linked_list_expressions. It indicates the fill-in value to use for those values that have

been omitted when generating the dense data structure. If the fill_in_value

parameter is omitted, the transformation assumes there is no fill in value and must

use a separate validity check. If this directive is not present, the transformation will

attempt to determine a fill in value by itself.

In all cases, it is up to the programmer to ensure that the information specified by the

directives is actually true. Although a section of code that is marked safe is still subject to the

57

checks indicated in section 3.4, the transformation will make no effort to verify whether things

such as aliasing or pointer arithmetic are not present or safe if they are present. Similarly, the

transformation will make no effort to determine if the index expression actually returns the

index, if it is safe to be used as such (e.g. if it has side-effects) or even if it has the right type. Nor

will it do this for the fill in value, or anything else. If the programmer chooses to lie to the

compiler with these directives, transformation will succeed but likely yield incorrect results.

4 Experimentation

In the previous section, we have described the linked list transformation process, and applied

it to the matrix multiplication example from section 2. Appendix A contains the complete result

of that transformation for both sublimation and annihilation. Here, all possible traversals have

been transformed and the initialization loops have been moved as much as possible. This has left

us with a very clean main loop that looks exactly like a normal dense matrix multiplication.

As indicated in the introduction, we will evaluate the results of this transformation by

generating new, optimized sparse code using some sample matrices from the Harwell Boeing

collection.

The sparse compiler MT1 will be used to generate this new sparse code. This will be done for

the sublimation results only; the resulting data structures of the annihilation process are no

longer sparse so there is little MT1 could do with it, and the array structures do not lend

themselves to translation to FORTRAN.

Almost everything in this section is specific to the use of matrices. The linked list

transformation algorithm itself is not limited to matrices, but can be used on any linked list

structure.

4.1 Translation into FORTRAN

The next thing to do is translate the code into FORTRAN so it can be transformed into sparse

code again by the MT1 compiler.

Of course, not all C code can be easily translated into FORTRAN. For this translation to work

there may be no more pointers (besides those that are actually arrays) left in the code that must

be translated, and no structures. Some of this can be worked around; structures can be split into

separate variables and arrays of structures into separate arrays.

Fortunately, the transformed main loop of the matrix multiplication sample contains no

pointers and no structures, so it can be transformed without issue.

Translation into FORTRAN is done using an automated process. This C to FORTRAN

conversion program was developed for this research, and can handle only a very limited subset

of C; it can handle exactly those parts of C that are used in the loops that need to be translated.

In order to feed this translation process, the transformed main loop is extracted into a

separate function, and some additional directives are added. For the loop that results from

sublimation, this looks like this:

/***ARRAY_BOUNDS(result,dimensions,dimensions)***/

/***ARRAY_BOUNDS(leftCellArrayArray,dimensions,dimensions)***/

/***ARRAY_BOUNDS(right,dimensions,dimensions)***/

void Mult(int dimensions, float **result, float **leftCellArrayArray,

 float **right)

{

4 int col;

 int row;

58

 int x;

 for(col = 0; col < dimensions; ++col)

 {

 for(row = 0; row < dimensions; ++row)

 {

 for(x = 0; x < dimensions; ++x)

 {

 result[row][col] = result[row][col] +

 leftCellArrayArray[row][x] * right[x][col];

 }

 }

 }

}

The directives used here are not listed in the previous section because they are not part of the

linked list transformation process, but belong to the C to FORTRAN translation specifically. The

ARRAY_BOUNDS directive specifies that a certain pointer variable is in fact an array, and

specifies the expression to use for the size of each of its dimensions.

The resulting FORTRAN code looks like this:

 subroutine Mult(dimensions, result, leftCellArrayArray, right)

 integer dimensions

 real result(dimensions,dimensions)

 real leftCellArrayArray(dimensions,dimensions)

 real right(dimensions,dimensions)

 integer col

 integer row

 integer x

 do col = 1, dimensions

 do row = 1, dimensions

 do x = 1, dimensions

 result(row,col) = result(row,col) +

 + leftCellArrayArray(row,x) * right(x,col)

 end do

 end do

 end do

 end

It is worth noting that the original loops in the C code ran from 0 to dimensions-1, while these

loops run from 1 to dimensions. Because FORTRAN arrays are one-based (whereas C arrays are

zero-based) and the row, col and x variables are used only in an array index expression, this is

safe.

The code above is not precisely the code we will use. We will in fact use a slight variation of

the algorithm. So far, we have assumed both matrices are square and of the same size. Because

the right hand side and result matrices are not sparse need to be stored in memory completely

this becomes prohibitive for large matrices. Instead, the algorithm we will use multiplies the

sparse matrix with one that is tall and narrow. This does not change much for the algorithm; all

that needs to be changed is the upper bound for the “col” loop, everything else remains the same.

4.2 Using the sparse compiler

The subroutine above cannot be input in MT1 as-is. A program declaration must be added as

well as annotations that instruct MT1 about the sparse matrices used in the program. As

indicated in [2], there are multiple types of directives that can be used to indicate the non-zero

59

structure of the matrix used. We will be using the automatic non-zero structure analysis by using

file annotations as described in section 4.2 of [2].

We assume here that the used matrix or at least one with identical structure is available at

compile time.

After performing the transformation, we will modify the initialization loop for the extended

data structure leftCellArrayArray to explicitly generate the matrix file in the coordinate system

format used by the sparse compiler.

FILE *file = fopen(“matrix.cs”, “r”);

for(row = 0; row < dimensions; ++row)

{

 if(leftRowCopy != NULL && leftRowCopy->RowIndex < row)

 leftRowCopy = leftRowCopy->Next;

 if(leftRowCopy != NULL && leftRowCopy->RowIndex == row)

 {

 leftCell = leftRowCopy->Cell;

 leftCellCopy = leftCell;

 for(x = 0; x < dimensions; ++x)

 {

 if(leftCellCopy != NULL && leftCellCopy->ColIndex < x)

 leftCellCopy = leftCellCopy->ColNext;

 if(leftCellCopy != NULL &&

 leftCellCopy->ColIndex == x)

 {

 fprintf(file, “%i %i %f\n”, row, x, leftCellCopy->Value);

 }

 }

 }

}

This loop is then executed at compile time, after which it can be removed from the

transformed code. Now the matrix file has been generated, we can generate a program to

complete the FORTRAN code:

 program main

 integer N

 parameter (N=5005)

 real left(N,N)

C_SPARSE(ARRAY(left), FILE('matrix.cs'))

 real right(N,N)

 real result(N,N)

 call Mult(N, result, left, right)

 end

This code is run through MT1. Appendix C shows the result of this transformation.

Although we will not run the annihilation code through MT1 in this case we can still do some

optimizations, and if the entire transformation is implemented for C these could easily be done

automatically. Because of the simple structure of the transformed loop, we can easily use

techniques such as loop interchange to optimize memory access patterns and enable

vectorization. The restructured loop looks like this:

for(row = 0; row < newRowDimensions; ++row)

{

 for(x = 0; x < newDimensionsArray[row]; ++x)

60

 {

 array = rightArrayArray[row][x];

 for(col = 0; col < dimensions; ++col)

 {

 tempResult[row][col] += leftCellArrayArray[row][x] * array[col];

 }

 }

}

The array variable was introduced to simplify the index expression in the main loop; without

it the expression was deemed too complex to vectorize by the compiler.

4.3 Compilation

To ensure a fair comparison between the original linked list code and the code generated by

MT1, the latter is transformed back into C using the f2c utility. At this point, a few manual

modifications must be made. The C�FORTRAN�C conversion has caused our two-dimensional

arrays, which were originally “array-of-arrays” style, to be changed into FORTRAN-style column-

major order strided arrays. We must manually change this back to use jagged arrays, and correct

the indexing order so that optimal memory access efficiency is obtained. If we can eventually

implement the entire process for C, these manual corrections will not be necessary.

The final resulting C code is integrated with the test harness which loads all the necessary

matrices and also measures the time taken. This code is then compiled using the Intel C++

Compiler for Windows 9.1, using the /O3 /QxN /Qipo compiler options. These options tell the

compiler to use maximum optimization and to target the Pentium 4 enabling it to use the MMX,

SSE and SSE2 vector instructions.

Because the inefficiencies and complex expressions introduced by the f2c transformation

make it very difficult to effectively optimize the resulting C code (a problem which would not

exist if the entire sparse matrix transformation is done with C in mind) we will also include the

FORTRAN code in the results. This has been compiled with the Intel Visual FORTRAN Compiler

for Windows 9.1, using the same compiler options as used with the C compiler.

4.4 Results

The steps above were performed for a number of matrices from the Harwell Boeing

collection, of varying size and density. The results of each algorithm were timed on a system

using an Intel Xeon 3.06GHz CPU. In each case, the right hand side matrix was 1000 columns

wide.

sherman3 e40r5000 af23560

Size 5005x5005 17281x17281 23560x23560

Non-zero elements 20033 553965 484256

Density 0.080% 0.186% 0.087%

Results (seconds)

 Original algorithm 22.813 s 266.404 s 443.982 s

Alternative algorithm 2.138 s 46.108 s 29.940 s

Annihilation 0.195 s 1.742 s 2.744 s

MT1 (Fortran) 0.095 s 5.228 s 2.216 s

MT1 (C) 0.124 s 5.153 s 3.314 s

It can be seen that the original algorithm is, as expected, quite inefficient. It always executes

the full number of iterations, regardless of how dense the matrix actually is. The alternative

linked list algorithm presented in appendix B does much better at exploiting the sparseness of

the matrix.

The C versions of the MT1 algorithms are outperformed by their FORTRAN equivalents,

mainly because of the optimization

vectorize far more of the loops; in fact, the C compiler most often can

Figure 3 shows the speed increases relative to the original linked list algorithm, where higher

is better.

Figure 3 Relative speed increase

The odd one out is obviously e40r

better than MT1. The reason is that this matrix

structure, but instead a band structure. In this case, MT1 uses a single array to store the non

zero values and uses index arrays to locate them. The multiplication still accesses the matrix in

row order, but only the indices containing non

annihilation does, but annihilation does it without indirection in the

efficient nesting order of the loops, allowing better

patterns. The C and FORTRAN versions of the MT1 algorithm for this matrix are very close

together owing to the fact that vectorizatio

The absolute times for the af23560 matrix are actually lower for most of the algorithms than

they were for the smaller e40r5000 matrix. This is because af23560 has much lower density; it

has a lower total number of non

does not exploit the sparsity, is still much slower, and

would appear that annihilation performs better with a relatively

alternative linked list algorithm and MT1 perform better with a less dense matrix.

which has nearly all its values on the main diagonal, is clearly best suited to the transformations

MT1 can perform.

It is interesting to note that the annihilation code was generated from the original, inefficient

algorithm. Even without using MT1, with just a few simple loop interchanges, and with the

overhead of the initialization

0

50

100

150

200

250

300

sherman3

linked list algorithm presented in appendix B does much better at exploiting the sparseness of

The C versions of the MT1 algorithms are outperformed by their FORTRAN equivalents,

optimization difficulties noted above. The FORTRAN compiler is able to

far more of the loops; in fact, the C compiler most often can vectorize

shows the speed increases relative to the original linked list algorithm, where higher

Relative speed increase

The odd one out is obviously e40r5000, as it is the only one where annihilation performs

better than MT1. The reason is that this matrix is not recognized by MT1 as having a diagonal

structure, but instead a band structure. In this case, MT1 uses a single array to store the non

s and uses index arrays to locate them. The multiplication still accesses the matrix in

row order, but only the indices containing non-zero values are used. This is extremely like what

annihilation does, but annihilation does it without indirection in the inner loop, and with a more

efficient nesting order of the loops, allowing better vectorization and improved memory access

patterns. The C and FORTRAN versions of the MT1 algorithm for this matrix are very close

together owing to the fact that vectorization is not as efficient here.

The absolute times for the af23560 matrix are actually lower for most of the algorithms than

they were for the smaller e40r5000 matrix. This is because af23560 has much lower density; it

has a lower total number of non-zero elements than e40r5000. The original algorithm, which

exploit the sparsity, is still much slower, and, perhaps surprisingly,

would appear that annihilation performs better with a relatively denser matrix, whereas the

linked list algorithm and MT1 perform better with a less dense matrix.

which has nearly all its values on the main diagonal, is clearly best suited to the transformations

It is interesting to note that the annihilation code was generated from the original, inefficient

algorithm. Even without using MT1, with just a few simple loop interchanges, and with the

initialization loops included, we have succeeded in transforming a very

e40r5000 af23560

Alternative algorithm

Annihilation

MT1 (fortran)

MT1 (C)

61

linked list algorithm presented in appendix B does much better at exploiting the sparseness of

The C versions of the MT1 algorithms are outperformed by their FORTRAN equivalents,

difficulties noted above. The FORTRAN compiler is able to

vectorize none of them.

shows the speed increases relative to the original linked list algorithm, where higher

the only one where annihilation performs

by MT1 as having a diagonal

structure, but instead a band structure. In this case, MT1 uses a single array to store the non-

s and uses index arrays to locate them. The multiplication still accesses the matrix in

zero values are used. This is extremely like what

inner loop, and with a more

and improved memory access

patterns. The C and FORTRAN versions of the MT1 algorithm for this matrix are very close

The absolute times for the af23560 matrix are actually lower for most of the algorithms than

they were for the smaller e40r5000 matrix. This is because af23560 has much lower density; it

ents than e40r5000. The original algorithm, which

 so is annihilation. It

matrix, whereas the

linked list algorithm and MT1 perform better with a less dense matrix. Sherman3,

which has nearly all its values on the main diagonal, is clearly best suited to the transformations

It is interesting to note that the annihilation code was generated from the original, inefficient

algorithm. Even without using MT1, with just a few simple loop interchanges, and with the

transforming a very

Alternative algorithm

Annihilation

MT1 (fortran)

MT1 (C)

62

inefficient algorithm into one that outperforms an optimal linked list algorithm and in a few

cases even the sparse code generated by MT1.

63

Bibliography

1. Bik, Aart C.J. Compiler Support for Sparse Matrix Computations. s.l. : PhD Thesis, Leiden

University, 1996.

2. Bik, Aart J.C., Brinkhaus, Peter J.H. and Wijshoff, Harry A.G. The Sparse Compiler MT1: A

Reference Guide. s.l. : LIACS.

3. Zhao, L. and Wijshoff, H. A Case Study in Automatic Data Structure Selection for Optimizing

Sparse Matrix Computation. s.l. : LIACS.

4. Kennedy, Ken and Allen, Randy. Optimizing Compilers for Modern Architectures: A

Dependence-based Approach. s.l. : Morgan Kaufmann Publishers, 2001.

5. Putting pointer analysis to work. Ghiya, Rakesh and Hendren, Laurie J. New York, NY,

USA : ACM Press, 1998. Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles

of programming languages. pp. 121-133.

6. Parallelizing graph construction operations in programs with cyclic graphs. Hwang, Yuan-

Shin. 9, Amsterdam, The Netherlands : Elsevier Science Publishers B. V., 2002, Parallel

Computing, Vol. 28, pp. 1307-1328.

7. Identifying parallelism in programs with cyclic graphs. Hwang, Yuan-Shin and Saltz, Joel

H. 3, Orlando, FL, USA : Orlando, FL, USA, 2003, Journal of Parallel and Distributed Computing ,

Vol. 63, pp. 337-355.

8. Optimizing memory accesses for spatial computation. Budiu, Mihai and Goldstein, Seth C.

Washington, DC, USA : IEEE Computer Society, 2003. Proceedings of the international

symposium on Code generation and optimization: feedback-directed and runtime optimization.

pp. 216-227.

9. Which pointer analysis should I use? Hind, Michael and Pioli, Anthony. New York, NY,

USA : ACM Press, 2000. Proceedings of the 2000 ACM SIGSOFT international symposium on

Software testing and analysis . pp. 113-123.

10. Pointer analysis: haven't we solved this problem yet? Hind, Michael. New York, NY, USA :

ACM Press, 2001. Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program

analysis for software tools and engineering. pp. 54-61.

11. Context-sensitive interprocedural points-to analysis in the presence of function pointers.

Emami, Maryam, Ghiya, Rakesh and Hendren, Laurie J. New York, NY, USA : ACM Press, 1994.

Proceedings of the ACM SIGPLAN 1994 conference on Programming language design and

implementation. pp. 242-256.

64

12. Symbolic pointer analysis. Zhu, Jianwen. New York, NY, USA : ACM Press, 2002.

Proceedings of the 2002 IEEE/ACM international conference on Computer-aided design . pp.

150-157.

13. Symbolic pointer analysis revisited. Zhu, Jianwen and Calman, Silvian. New York, NY,

USA : ACM Press, 2004. Proceedings of the ACM SIGPLAN 2004 conference on Programming

language design and implementation. pp. 145-157.

65

Appendix A. Transformed matrix multiplication code.

Sublimation:

int MatrixMultiplyTransformed(Matrix left, float** right, int rightDimensions,

 float **result, int resultDimensions)

{

 RowHead *leftRow = left.Row;

 Cell *leftCell;

 int dimensions = left.Dimensions;

 int col;

 int row;

 int x;

 float **leftCellArrayArray;

 Cell *leftCellCopy;

 RowHead *leftRowCopy;

 if(!(left.Dimensions == rightDimensions &&

 left.Dimensions == resultDimensions))

 return -1;

 leftRow = left.Row;

 leftCellArrayArray = malloc(sizeof(float*) * dimensions);

 leftRowCopy = leftRow;

 for(row = 0; row < dimensions; ++row)

 {

 if(leftRowCopy != NULL && leftRowCopy->RowIndex < row)

 leftRowCopy = leftRowCopy->Next;

 leftCellArrayArray[row] = malloc(sizeof(float) * dimensions);

 memset(leftCellArrayArray[row], 0, sizeof(float) * dimensions);

 if(leftRowCopy != NULL && leftRowCopy->RowIndex == row)

 {

 leftCell = leftRowCopy->Cell;

 leftCellCopy = leftCell;

 for(x = 0; x < dimensions; ++x)

 {

 if(leftCellCopy != NULL && leftCellCopy->ColIndex < x)

 leftCellCopy = leftCellCopy->ColNext;

 if(leftCellCopy != NULL &&

 leftCellCopy->ColIndex == x &&

 leftCellCopy->RowIndex == row)

 {

 leftCellArrayArray[row][x] = leftCellCopy->Value;

 }

 }

 }

 }

 // Main loop

 for(col = 0; col < dimensions; ++col)

 {

 for(row = 0; row < dimensions; ++row)

 {

66

 for(x = 0; x < dimensions; ++x)

 {

 result[row][col] += leftCellArrayArray[row][x] * right[x][col];

 }

 }

 }

 // Cleanup

 for(row = 0; row < dimensions; ++row)

 free(leftCellArrayArray[row]);

 free(leftCellArrayArray);

 return 0;

}

Annihilation:

int MatrixMultiplyAnnihilation(Matrix left, float **right, int rightDimensions,

 float **result, int resultDimensions)

{

 RowHead *leftRow = left.Row;

 Cell *leftCell;

 int dimensions = left.Dimensions;

 int col;

 int row;

 int x;

 float **leftCellArrayArray;

 int leftCellArraySize;

 float ***rightArrayArray;

 int rightArraySize;

 int *newDimensionsArray;

 int newRowDimensions;

 float **resultArray;

 Cell *leftCellCopy;

 RowHead *leftRowCopy;

 float *test;

 int leftCellArrayArraySize;

 int rightArrayArraySize;

 int resultArraySize;

 if(!(left.Dimensions == rightDimensions &&

 left.Dimensions == resultDimensions))

 return -1;

 // Initialisation

 newRowDimensions = 0;

 leftCellArrayArraySize = 100;

 leftCellArrayArray = malloc(sizeof(float*) * leftCellArrayArraySize);

 newDimensionsArray = malloc(sizeof(int) * leftCellArrayArraySize);

 leftRowCopy = leftRow;

 for(row = 0; row < dimensions; ++row)

 {

 if(newRowDimensions >= leftCellArrayArraySize)

 {

 leftCellArrayArraySize *= 2;

 leftCellArrayArray = realloc(leftCellArrayArray,

 sizeof(float*) * leftCellArrayArraySize);

 newDimensionsArray = realloc(leftCellArrayArray,

67

 sizeof(int) * newDimensionsArray);

 }

 if(leftRowCopy != NULL && leftRowCopy->RowIndex < row)

 leftRowCopy = leftRowCopy->Next;

 if(leftRowCopy != NULL && leftRowCopy->RowIndex == row)

 {

 leftCell = leftRowCopy->Cell;

 leftCellArraySize = 100;

 leftCellArrayArray[newRowDimensions] = malloc(sizeof(float) *

 leftCellArraySize);

 newDimensionsArray[newRowDimensions] = 0;

 leftCellCopy = leftCell;

 // Initialisation loop

 for(x = 0; x < dimensions; ++x)

 {

 if(newDimensionsArray[newRowDimensions] >= leftCellArraySize)

 {

 leftCellArraySize *= 2;

 leftCellArrayArray[newRowDimensions] =

 realloc(leftCellArrayArray[newRowDimensions],

 sizeof(float) * leftCellArraySize);

 }

 if(leftCellCopy != NULL && leftCellCopy->ColIndex < x)

 leftCellCopy = leftCellCopy->ColNext;

 if(leftCellCopy != NULL &&

 leftCellCopy->ColIndex == x &&

 leftCellCopy->RowIndex == row)

 {

leftCellArrayArray[newRowDimensions][newDimensionsArray[newRowDimensions]] =

leftCellCopy->Value;

 ++newDimensionsArray[newRowDimensions];

 }

 }

 ++newRowDimensions;

 }

 }

 newRowDimensions = 0;

 rightArrayArraySize = 100;

 rightArrayArray = malloc(sizeof(float**) * rightArrayArraySize);

 leftRowCopy = leftRow;

 for(row = 0; row < dimensions; ++row)

 {

 if(newRowDimensions >= leftCellArrayArraySize)

 {

 rightArrayArraySize *= 2;

 rightArrayArray = realloc(rightArrayArray,

 sizeof(float*) * rightArrayArraySize);

 }

 if(leftRowCopy != NULL && leftRowCopy->RowIndex < row)

 leftRowCopy = leftRowCopy->Next;

 if(leftRowCopy != NULL && leftRowCopy->RowIndex == row)

 {

 leftCell = leftRowCopy->Cell;

68

 rightArraySize = 100;

 rightArrayArray[newRowDimensions] = malloc(sizeof(float*) *

rightArraySize);

 newDimensionsArray[newRowDimensions] = 0;

 leftCellCopy = leftCell;

 // Initialisation loop

 for(x = 0; x < dimensions; ++x)

 {

 if(newDimensionsArray[newRowDimensions] >= rightArraySize)

 {

 leftCellArraySize *= 2;

 rightArrayArray[newRowDimensions] =

 realloc(rightArrayArray[newRowDimensions],

 sizeof(float*) * rightArraySize);

 }

 if(leftCellCopy != NULL && leftCellCopy->ColIndex < x)

 leftCellCopy = leftCellCopy->ColNext;

 if(leftCellCopy != NULL &&

 leftCellCopy->ColIndex == x &&

 leftCellCopy->RowIndex == row)

 {

rightArrayArray[newRowDimensions][newDimensionsArray[newRowDimensions]] =

right[x];

 ++newDimensionsArray[newRowDimensions];

 }

 }

 ++newRowDimensions;

 }

 }

 leftRowCopy = leftRow;

 // Create temp result array

 resultArraySize = 100;

 resultArray = malloc(sizeof(float*) * resultArraySize);

 // Initial values are read, so we need another initialisation loop

 newRowDimensions = 0;

 for(row = 0; row < dimensions; ++row)

 {

 if(newRowDimensions >= leftCellArrayArraySize)

 {

 resultArraySize *= 2;

 resultArray = realloc(resultArray,

 sizeof(float*) * resultArraySize);

 }

 if(leftRowCopy != NULL && leftRowCopy->RowIndex < row)

 leftRowCopy = leftRowCopy->Next;

 if(leftRowCopy != NULL && leftRowCopy->RowIndex == row)

 {

 resultArray[newRowDimensions] = result[row];

 ++newRowDimensions;

 }

 }

 for(col = 0; col < cols; ++col)

 {

69

 for(row = 0; row < newRowDimensions; ++row)

 {

 for(x = 0; x < newDimensionsArray[row]; ++x)

 {

 tempResult[row][col] += leftCellArrayArray[row][x] *

 rightArrayArray[row][x][col];

 }

 }

 }

 // cleanup

 free(tempResult);

 for(row = 0; row < newRowDimensions; ++row)

 {

 free(leftCellArrayArray[row]);

 free(rightArrayArray[row]);

 }

 free(leftCellArrayArray);

 free(rightArrayArray);

 free(newDimensionsArray);

 return 0;

}

70

Appendix B. Alternative matrix multiplication algorithm

int MatrixMultiply(Matrix left, float **right, int rightDimensions,

 float **result, int resultDimensions)

{

 RowHead *leftRow = left.Row;

 Cell *leftCell;

 int dimensions = left.Dimensions;

 int col;

 if(!(left.Dimensions == rightDimensions &&

 left.Dimensions == resultDimensions))

 return -1;

 for(col = 0; col < dimensions; ++col)

 {

 leftRow = left.Row;

 while(leftRow != NULL)

 {

 leftCell = leftRow->Cell;

 while(leftCell != NULL)

 {

 result[leftCell->RowIndex][col] += leftCell->Value *

 right[leftCell->ColIndex][col];

 leftCell = leftCell->ColNext;

 }

 leftRow = leftRow->Next;

 }

 }

 return 0;

}

Transformed using sublimation:

int MatrixMultiplyTransformed(Matrix left, float **right, int rightDimensions,

 float **result, int resultDimensions)

{

 RowHead *leftRow = left.Row;

 Cell *leftCell;

 int dimensions = left.Dimensions;

 int col;

 int leftRowCounter;

 int leftCellCounter;

 float **leftCellArrayArray;

 if(!(left.Dimensions == rightDimensions &&

 left.Dimensions == resultDimensions))

 return -1;

 leftRow = left.Row;

 leftCellArrayArray = malloc(dimensions * sizeof(float*));

 /* bulk initialisation not possible so use new loop guard */

 for(leftRowCounter = 0; leftRowCounter < dimensions; ++leftRowCounter)

 {

 leftCellArrayArray[leftRowCounter] = malloc(dimensions * sizeof(float));

71

 memset(leftCellArrayArray[leftRowCounter], 0, dimensions * sizeof(float));

 if(leftRow != NULL && leftRowCounter == leftRow->RowIndex)

 {

 leftCell = leftRow->Cell;

 while(leftCell != NULL)

 {

 leftCellArrayArray[leftRowCounter][leftCell->ColIndex] =

 leftCell->Value;

 leftCell = leftCell->ColNext;

 }

 leftRow = leftRow->Next;

 }

 }

 for(col = 0; col < dimensions; ++col)

 {

 for(leftRowCounter = 0; leftRowCounter < dimensions; ++leftRowCounter)

 {

 for(leftCellCounter = 0; leftCellCounter < dimensions; ++leftCellCounter

)

 {

 result[leftRowCounter][col] +=

leftCellArray[leftRowCounter][leftCellCounter] * right[leftCellCounter][col];

 }

 }

 }

 for(leftRowCounter = 0; leftRowCounter < dimensions; ++leftRowCounter)

 {

 free(leftCellArrayArray[leftRowCounter]);

 }

 free(leftCellArrayArray);

 return 0;

}

Transformed using annihilation:

int MatrixMultiplyAnnihilation(Matrix left, float **right, int rightDimensions,

 float **result, int resultDimensions)

{

 RowHead *leftRow = left.Row;

 Cell *leftCell;

 int dimensions = left.Dimensions;

 int col;

 float **leftCellArrayArray;

 float ***rightArrayArray;

 Cell *leftCellCopy;

 int *newDimensionsArray;

 int newRowDimensions;

 int leftRowCounter;

 int leftCellCounter;

 RowHead *leftRowCopy;

 float **resultArray;

 if(!(left.Dimensions == rightDimensions &&

 left.Dimensions == resultDimensions))

72

 return -1;

 leftRow = left.Row;

 leftCellArrayArray = malloc(dimensions * sizeof(float*));

 leftRowCopy = leftRow;

 newRowDimensions = 0;

 while(leftRowCopy != NULL)

 {

 leftCell = leftRowCopy->Cell;

 leftCellArrayArray[newRowDimensions] = malloc(dimensions * sizeof(float));

 newDimensionsArray[newRowDimensions] = 0;

 leftCellCopy = leftCell;

 while(leftCellCopy != NULL)

 {

leftCellArrayArray[newRowDimensions][newDimensionsArray[newRowDimensions]] =

leftCellCopy->Value;

 leftCellCopy = leftCellCopy->ColNext;

 ++newDimensionsArray[newRowDimensions];

 }

 leftRow = leftRow->Next;

 ++newRowDimensions;

 }

 rightArrayArray = malloc(dimensions * sizeof(float**));

 leftRowCopy = leftRow;

 newRowDimensions = 0;

 while(leftRowCopy != NULL)

 {

 leftCell = leftRowCopy->Cell;

 rightArrayArray[newRowDimensions] = malloc(dimensions * sizeof(float*));

 newDimensionsArray[newRowDimensions] = 0;

 leftCellCopy = leftCell;

 while(leftCellCopy != NULL)

 {

 rightArrayArray[newRowDimensions][newDimensionsArray[newRowDimensions]] =

 right[leftCellCopy->ColIndex];

 leftCellCopy = leftCellCopy->ColNext;

 ++newDimensionsArray[newRowDimensions];

 }

 leftRow = leftRow->Next;

 ++newRowDimensions;

 }

 resultArray = malloc(dimensions * sizeof(float*));

 leftRowCopy = leftRow;

 newRowDimensions = 0;

 while(leftRowCopy != NULL)

 {

 resultArray[newRowDimensions] = result[leftRow->RowIndex];

 leftRow = leftRow->Next;

 ++newRowDimensions;

 }

 for(col = 0; col < dimensions; ++col)

 {

 for(leftRowCounter = 0; leftRowCounter < newRowDimensions;

73

 ++leftRowCounter)

 {

 for(leftCellCounter = 0; leftCellCounter <

 newDimensionsArray[newRowDimensions]; ++leftCellCounter)

 {

 resultArray[leftRowCounter][col] +=

 leftCellArrayArray[leftRowCounter][leftCellCounter] *

 rightArrayArray[leftRowCounter][leftCellCounter][col];

 }

 }

 }

 return 0;

}

74

Appendix C. Optimized matrix multiplication

 PROGRAM MAIN

 REAL RIGHT(5005,1000),RESULT(5005,1000)

 INTEGER I_,J_,M_,N_,NNZ_,K_

 REAL V_

 INTEGER TMP__(1)

 REAL DN1_LEFT,DN2_LEFT,DN3_LEFT,DN4_LEFT,DN5_LEFT

 COMMON /LEFT___/DN1_LEFT(386:5005),DN2_LEFT(4620),DN3_LEFT(

 +36:5005),DN4_LEFT(4970),DN5_LEFT(5005,(-1):1)

 OPEN (1,FILE='matrix.mtx',STATUS='OLD')

 READ (1,*) M_,N_,NNZ_

 IF ((M_.NE.5005).OR.(N_.NE.5005)) STOP 'Incorrect size'

 DO K_ = 1, NNZ_, 1

 READ (1,*) I_,J_,V_

 IF (((I_-J_).EQ.(-385)).AND.((387.LE.(I_+J_)).AND.(((I_+J_).LE.

 + 9625).AND.((386.LE.J_).AND.(I_.LE.4620))))) THEN

 DN1_LEFT(J_) = V_

 ELSE IF ((I_-J_).EQ.385) THEN

 DN2_LEFT(J_) = V_

 ELSE IF (((I_-J_).EQ.(-35)).AND.((37.LE.(I_+J_)).AND.(((I_+J_)

 + .LE.9975).AND.((36.LE.J_).AND.(I_.LE.4970))))) THEN

 DN3_LEFT(J_) = V_

 ELSE IF ((I_-J_).EQ.35) THEN

 DN4_LEFT(J_) = V_

 ELSE IF (((-1).LE.(I_-J_)).AND.((I_-J_).LE.1)) THEN

 DN5_LEFT(J_,I_-J_) = V_

 ELSE IF (((-34).LE.(I_-J_)).AND.((I_-J_).LE.(-2))) THEN

 STOP 'Entry occurs in zero region'

 ELSE IF ((2.LE.(I_-J_)).AND.((I_-J_).LE.34)) THEN

 STOP 'Entry occurs in zero region'

 ELSE IF (((-384).LE.(I_-J_)).AND.((I_-J_).LE.(-36))) THEN

 STOP 'Entry occurs in zero region'

 ELSE IF ((36.LE.(I_-J_)).AND.((I_-J_).LE.384)) THEN

 STOP 'Entry occurs in zero region'

 ELSE IF ((I_-J_).LE.(-386)) THEN

 STOP 'Entry occurs in zero region'

 ELSE IF (386.LE.(I_-J_)) THEN

 STOP 'Entry occurs in zero region'

 END IF

 ENDDO

 CLOSE (1)

 CALL MULT_000LEFT0(5005,1000,RESULT,RIGHT)

 STOP

 END

 SUBROUTINE MULT_000LEFT0(DIM,WIDTH,RESULT,RIGHT)

 INTEGER DIM,WIDTH

 REAL RESULT(5005,1000)

 REAL RIGHT(5005,1000)

 INTEGER ROW,COL,X

 REAL DN2_LEFT,DN1_LEFT,DN3_LEFT,DN4_LEFT,DN5_LEFT

 COMMON /LEFT___/DN1_LEFT(386:5005),DN2_LEFT(4620),DN3_LEFT(

 +36:5005),DN4_LEFT(4970),DN5_LEFT(5005,(-1):1)

 DO ROW = 1, 1000, 1

 DO X = 1, 4620, 1

75

 RESULT(X+385,ROW) = RESULT(X+385,ROW)+(DN2_LEFT(X)*RIGHT(X,ROW

 +))

 ENDDO

 DO X = 1, 4970, 1

 RESULT(X+35,ROW) = RESULT(X+35,ROW)+(DN4_LEFT(X)*RIGHT(X,ROW))

 ENDDO

 DO COL = -1, 1, 1

 DO X = MAX0(1,COL+1), MIN0(5005,COL+5005), 1

 RESULT(-COL+X,ROW) = RESULT(-COL+X,ROW)+(DN5_LEFT(X,-COL)*

 + RIGHT(X,ROW))

 ENDDO

 ENDDO

 DO X = 36, 5005, 1

 RESULT(X-35,ROW) = RESULT(X-35,ROW)+(DN3_LEFT(X)*RIGHT(X,ROW))

 ENDDO

 DO X = 386, 5005, 1

 RESULT(X-385,ROW) = RESULT(X-385,ROW)+(DN1_LEFT(X)*RIGHT(X,ROW

 +))

 ENDDO

 ENDDO

 RETURN

 END

 BLOCK DATA

 REAL DN1_LEFT,DN2_LEFT,DN3_LEFT,DN4_LEFT,DN5_LEFT

 COMMON /LEFT___/DN1_LEFT(386:5005),DN2_LEFT(4620),DN3_LEFT(

 +36:5005),DN4_LEFT(4970),DN5_LEFT(5005,(-1):1)

 DATA DN1_LEFT /4620*0./

 DATA DN2_LEFT /4620*0./

 DATA DN3_LEFT /4970*0./

 DATA DN4_LEFT /4970*0./

 DATA DN5_LEFT /15015*0./

 END

