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Abstract

In recent years there has been an unprecedented growth in the amount of data
being gathered worldwide. Data may include business data, sensor data, web
data, log data, and social data. Data volumes of terabytes are common, petabytes
are not unusual anymore, and it is almost certainly not long before exabyte scale
data becomes the norm.

Big data presents an opportunity for in-depth analysis. Trends and patterns
can be derived from the data, enabling a wide variety of business and research
opportunities. As a result, the ability to process large amounts of data—often too
large to be stored and processed by traditional relational database systems—has
become very important. Processing big data requires very large scale resources
such as large clusters of commodity machines that allow the data to be processed
in a distributed fashion. Google’s MapReduce framework and its open source
implementation Hadoop have emerged as the de facto standard data processing
platform for such environments.

At the same time cloud computing has emerged, enabling users to dynamically
provision computing resources and pay only for usage on a pay-as-you-go basis.
Cloud computing enables anyone to gain access to large scale computing resources
without the need to create their own infrastructure, drastically driving down the
cost and making it possible for even individuals or small organizations to afford
the resources necessary for processing big data. Cloud computing adoption has
been driven by advances in virtualization and the wide-spread availability of high-
bandwidth network connectivity.

When dealing with resources at this level of scale it becomes increasingly diffi-
cult to efficiently utilize all resources. With the billing model used by most cloud
providers, provisioning a single node for ten hours costs the same as provisioning
ten nodes for one hour, so it would be highly desirable if distributed applications
could achieve a linear speed-up when more nodes or nodes with higher hardware
specifications are provisioned. However, a number of factors limit the scalabil-
ity of these applications so they cannot fully use the provisioned resources. In the
cloud, inefficient resource utilization directly leads to higher costs for no additional
benefit.
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In this thesis, I investigate two major causes that contribute to the inability
of data intensive distributed applications to efficiently utilize resources in cloud
environments or other large scale distributed systems, and propose methods to
mitigate their effects.

The first major cause of inefficient resource utilization is workload imbalance.
This occurs when certain workers have a longer execution time than others, leading
to stragglers: a handful of tasks that hold up an entire application. When a
workload has stragglers, some computing resources provisioned for the workload
may be idle, or partially idle, while waiting for the stragglers to finish. Because
these resources are not being utilized they are unable to assist in speeding up the
processing of the workload.

Workload imbalance and stragglers can have several causes such as data skew,
processing skew and performance heterogeneity. Data skew occurs when the data
to be processed is not divided evenly among the workers. Processing skew occurs
when certain records in the data—even if they are not bigger than others—take
more processing time. Performance heterogeneity can be caused by differences in
the hardware between nodes, but also by environmental factors such as background
processes active on certain machines, or interference between virtual machines
when they are sharing the same physical host.

It is possible to mitigate data skew—and to a lesser extent, processing skew—by
sampling the data beforehand, but these approaches cannot deal with performance
heterogeneity. Performance heterogeneity is more complicated to account for be-
forehand, because precise knowledge about the hardware configuration is usually
not available in the cloud and even identical instances can have very different per-
formance. Although measurements can be used to establish the performance of
each node, this can still not account for environmental factors that may change
during the execution of the workload.

I propose a method called Dynamic Partition Assignment, which is able to dy-
namically adjust data distribution among workers whenever imbalance is detected.
The workload is divided into many more partitions which are dynamically reas-
signed to workers that have already finished. Partitions are assigned to workers
in groups that can be transferred in bulk in order to avoid the overhead of do-
ing many small transfers. Because imbalance is lazily detected by monitoring the
completion times of workers Dynamic Partition Assignment is able to handle data
skew, processing skew and performance heterogeneity without any prior knowledge
about the data or hardware environment.

Dynamic Partition Assignment was implemented in Jumbo, a MapReduce-style
experimental data intensive distributed processing platform created for the pur-
pose of experimenting with workload imbalance, and evaluated both for data skew
and by running workloads on a heterogeneous environment. Dynamic Partition
Assignment was able to successfully reduce the effects of stragglers, in some cases
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improving processing times by 30 to 50%, and bringing the processing time to
within 10% of the optimally balanced processing time.

The second major cause of inefficient resource utilization is I/O interference.
When multiple applications are accessing the same resource simultaneously they
can interfere with each other causing performance degradation. This is particu-
larly a problem for I/O resources, such as disk storage, which are often shared
between processes and can have a dramatic reduction in performance when under
contention. For example, on a system with many CPU cores it can be desirable
to run additional parallel processes to try to utilize these CPU cores, but when
those processes contend for the same, more limited, I/O resources they are unable
to utilize either the CPU or the I/O resources to their fullest effectiveness.

The nature of I/O interference means that it is very difficult to mitigate after it
is detected to occur. Reassigning work often requires additional I/O to move data
to new locations, exacerbating the problem. Therefore, it is desirable to be able to
predict the effects of I/O interference before it actually occurs so that scheduling
and resource provisioning can be adjusted accordingly.

I propose a cost model that is able to predict the effects of I/O interference when
multiple MapReduce tasks running on the same node contend for that node’s I/O
resources. The model uses several workload parameters measured directly from
running a subset of the workload, and a number of hardware parameters derived
from micro-benchmarks, including hardware specific interference functions that
describe how the storage devices behave under contention. These parameters and
functions are used by an analytical model of MapReduce, which uses knowledge of
MapReduce’s processing flow and I/O patterns to predict the performance of the
workload when using specified numbers of parallel processes.

The I/O interference model was evaluated against several representative Map-
Reduce workloads and was able to predict their performance to within 5 to 10%
even for highly I/O intensive workloads or workloads that use a combination of
I/O and CPU intensive processing. The information provided by this model can be
utilized, for example, to determine how many nodes to provision with how many
CPUs, and how many tasks to run simultaneously on any given node. Additionally,
this model can be used by a scheduler to decide how to place tasks in the cluster
based on their expected effect on I/O performance.

Based on the I/O interference model, I have developed Mariom, a framework
and toolset for gathering hardware and workload parameters and making predic-
tions based on those parameters using the I/O interference model. This framework
can be integrated into scheduling or provisioning systems to provide the ability to
more accurately reason about situations where I/O interference occurs.

Improving resource utilization in the cloud helps to reduce application execu-
tion time, and reduces costs for both cloud providers and users. In this thesis, I
address two aspects of this problem: I propose Dynamic Partition Assignment to
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mitigate the effect of stragglers and improve workload balancing, and I propose a
cost model that addresses the problem of I/O interference. While both of these
are targeted at MapReduce, the methods used in this thesis are not specific to
MapReduce and can be applied to other data intensive applications in the cloud.
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Chapter 1

Introduction

1.1 Motivation

The amount of data worldwide has seen explosive growth in recent years. Compa-
nies, institutions and individuals produce ever more data, including business data,
sensor data, web data, log data, social data from sites such as Facebook or Twitter,
and more. This growth is fueled by an increasing amount of data sources, as data
is produced by ubiquitous mobile devices, aerial sensory technologies, software
logs, cameras, RFID readers, wireless sensor networks, and so forth. According
to the 2011 IDC Digital Universe Study [GR11], the total amount of data created
and replicated in 2010 exceeded 1.2 zettabytes, with a predicted growth to 35
zettabytes by 2020.

Examples of big data are numerous:

• Google reported it processes 20 petabytes of data each day [DG08] in order
to improve the quality of its web search engine.

• In 2010, the four main detectors of the Large Hadron Collider (LHC) at
CERN in Switzerland produced 13 petabytes of data [Bru11].

• The Sloan Digital Sky Survey [YAAJ+07] captures data at a rate of 200
gigabytes per day, producing over 140 terabytes in total. Its successor, the
Large Synoptic Survey Telescope [Swe06] is projected to produce that much
information every five days.

Due to the proliferation of big data, analyzing and processing very large quan-
tities of data has become a prime concern. Big data affects not just traditional
fields such as Internet search, finance and business informatics, but also scientists
in the fields of meteorology, genomics, connectomics, complex physics simulations,

1



1.1 Motivation 2

and biological and environmental research. In all cases, important information can
be derived by studying trends and correlations in very large data sets.

Data analysis is traditionally accomplished using relational database systems,
with the use of parallel databases to cope with larger volumes and long duration
analysis jobs. However, one of the defining characteristics of big data is that it is
too large to be processed in these kinds of systems, so alternative methods need
to be used.

A landmark in the area of distributed data processing was the development of
the MapReduce [DG04] programming model by Google. MapReduce enables scal-
able, fault-tolerant processing of terabytes or petabytes of data on large clusters of
commodity hardware, which allows for a substantial reduction in the cost of data
processing. MapReduce also provides a simple programming model, allowing de-
velopers to easily create large scale distributed data analysis applications without
having to worry about the complexities normally associated with distributed and
parallel programming.

Google’s MapReduce model was replicated by Apache Hadoop [Apaa], provid-
ing an open source implementation that was adopted by Yahoo!, Amazon, Face-
book, and many others. Through Hadoop, MapReduce has become the de facto
standard solution for large scale data processing, and it remains a target of much
active research.

Starting from 2007, cloud computing has begun to emerge as an alternative
to traditional cluster computing and grid computing. Cloud computing provides
on-demand access to very large scale computing resources using a pay-as-you-go
model, eliminating the need for organizations and individuals to maintain their
own infrastructure. Key features of the cloud include the ability to rapidly provi-
sion compute and storage resources, the ability to share resources between multiple
tenants, and the ability to elastically respond to changes in demand. Cloud com-
puting has rapidly grown in importance, and this growth is expected to continue;
the 2011 IDC Digital Universe Study estimates that by 2015, as much as 10%
of information (around 0.8 zettabyte) will be retained in the cloud, and in total
almost 20% will be “touched” by cloud computing service providers somewhere
during its journey from originator to disposal.

Thanks to cloud computing it is now within the reach of nearly anyone to gain
access to large scale computing resources without the need to invest in establishing
their own infrastructure, enabling even individuals or small companies to process
very large data sets. This brings with it a number of challenges for both the cloud
provider and the users.

Cloud systems provide users with access to a large number of resources. Com-
pute nodes—often provided as virtual machines—encompass CPU, memory, and
local disk resources. Typically, a persistent large scale storage system is also pro-
vided. Finally, linking all these together are network links between the various
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Figure 1.1: The ideal situation when more nodes are provisioned

nodes.
Being able to utilize all these resources at scale is a challenging issue, and one

that has received a lot of attention in the research community. For providers it’s
important that they are able to provide their customers with the best service, and
service as many customers as possible within the infrastructure they have at their
disposal. For users the primary concern is doing the most work with the least
resources, as that translates directly into lower costs.

The pricing model of most cloud environments means that the issue of scale-
out is very important. With most cloud providers, it costs the same amount of
money to use one node for ten hours as it would cost to use ten nodes for one
hour. If applications can support linear scale-out, this means an increase in speed
is attainable at no extra cost.

How an application scales is affected by its structure. Applications in the
cloud often consist of many individual worker processes that are scheduled to run
on the available resources. Figure 1.1 shows what would ideally happen with those
workers if the number of nodes is doubled: the workers are spread evenly over the
extra machines, so doubling the number of nodes leads to double the performance,
with no additional cost thanks to the cloud pricing model.

However, in actuality this rarely ever happens. Some of the problems are
highlighted in Figure 1.2:

• Because of skew in the input data or the amount of processing to be done
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Figure 1.2: The actual situation when more nodes are provisioned

per worker, not all workers may in fact be executing for the same length of
time. As a result, when the workers are distributed over more nodes, not all
the nodes are working for the same amount of time. The overall processing
time of the workload is decided by those workers that finish last, and it is
possible for a small number of workers, called stragglers, to dominate the
execution time of the workload. While those stragglers are finishing some
other resources may be idle, which means they are being wasted while they
are still being paid for.

• The nodes may not all be identical; in fact, they are very likely to be het-
erogeneous. Even if the nodes appear to be homogeneous, their performance
is often not identical, particularly if the nodes are virtual machine that may
be placed on one physical host together with other virtual machines. For
example, on Amazon’s cloud it is well known that even seemingly identical
compute instances can offer wildly varying performance [SDQR10, LYKZ10].
For this reason, tasks that executed in a certain amount of time on one node
may take a completely different amount of time on another. This means
that some workers may become slower, and it also causes further variance
between the tasks leading to stragglers.
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• When more nodes are added to a distributed processing job, this may entail
network communication overhead as the workers communicate and transfer
data between nodes. Depending on the speed of the network (which is also
known to suffer large fluctuations from instance to instance on typical cloud
platforms), the overhead of this additional communication can be substan-
tial. This will reduce the performance of the workers and therefore increase
the amount of time it takes to run the entire workload.

Because of these issues, it is likely that while adding additional nodes to a
distributed processing application will improve performance, that improvement is
likely to be less than linear. As a result, you are using N times the number of nodes
for more than 1

N
th of the original time, leading to an increase in cost. Thanks to

stragglers some of these nodes are also likely to be idle for some of the time, yet
you are still paying for them for the entire length of the job. Additionally, it is
very difficult to predict how the performance of a data processing workload will
change if more nodes are added and consequently what the additional cost will be,
making it very difficulty for the user to decide if the trade-off between higher costs
and shorter completion times is worth it.

The issue of scalability does not just apply to provisioning multiple nodes, but
can also affect worker execution on a single node. Many modern systems have mul-
tiple CPUs, and for example Amazon offers a number of compute instances where
the virtual machine has access to more than one of the CPUs of the underlying
physical host.

In the case where the workers are not naturally capable of exploiting paral-
lelism with multiple CPUs, the straightforward approach taken by many current
large scale data processing frameworks is to simply schedule more tasks to run
simultaneously on the same node. Figure 1.3 shows the ideal situation here: these
systems each have two CPU cores, so the number of parallel workers on each node
is increased from one to two. If linear scale-up is possible, performance will double
by doing this.

However, the reality is not so simple, as Figure 1.4 shows. Not only can workers
on the same system suffer from the same kind of skew issues as with multiple nodes,
they are also subject to resource contention.

While the number of CPU cores on a system keeps increasing, and those CPUs
are able to execute independently to a large degree, other subsystems are not
keeping pace. Simultaneously executed workers on a single node need to access a
number of shared resources, including memory, storage, and in some cases CPU
cache in the case of a multi-core processor. Of these resources, the storage devices
are the most subject to severe and highly variable interference. Since data intensive
applications are typically dominated by disk I/O this can have a significant impact
on the overall performance of parallel workers sharing a single storage resource.
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Storage systems can range from simple local hard disks to large arrays of disks or
a networked large-scale persistent storage system. In most cases however, these
will be presented as a single resource to the applications on the system. Whereas
two applications running on a multi-core system can both utilize their own CPU
core, they must share this I/O resource even if it is comprised of many individual
disks internally.

Traditional spinning platter disks are particularly sensitive to I/O interfer-
ence, as executing multiple workloads increases the number of seek operations and
therefore increases I/O latency and decreases performance. While smart read-
ahead caching algorithms and the use of SSD drives (which perform much better
for random access workloads than traditional hard disks) can alleviate some of
the problems, the core issue of sharing a single resource between multiple concur-
rent applications remains. This issue is further compounded when multiple virtual
machines on the same physical host are using the same physical storage device,
or when multiple nodes in a cloud environment are utilizing a shared persistent
storage system (for example, a storage system located on a SAN or NAS).

As a consequence of I/O interference, the execution time of the various workers
will increase. If the workers are entirely I/O bound, running multiple workers on
the same system will have no performance benefits at all. At best, it will take
the same amount of time to execute as just having a single worker at a time,
and at worst, thanks to the non-linear performance degradation of hard disks,
performance will actually decrease.

Due to the complex nature of storage systems, it is even more difficult to predict
the effect of multiple workers per node than with multiple nodes. It is therefore
nearly impossible for a user to decide how many tasks to run per node, how to
mix workloads of different I/O and CPU intensity, or even what kind of compute
instances (with what number of CPU cores) to use in the first place.

It is clear that it is highly desirable to improve the resource utilization of data
intensive applications, leading to improved scalability in both these scenarios. Not
only does this translate to improved execution time and lower costs for end users,
cloud providers are likewise able to utilize their infrastructure more efficiently and
would be able to service more customers with the same hardware.

1.2 Research goals

The goal of the research in this Ph.D. thesis is to improve resource utilization
for data intensive applications running in the cloud or cloud-like environments by
mitigating some of the factors indicated in Figure 1.2 and Figure 1.4.

In this area, this work makes the following contributions:

• Improved understanding of the behavior of data intensive distributed sys-
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tems. The issues outlined in Section 1.1 are examined in more detail for
their causes and their impact on performance.

• Enable workload balancing of data intensive applications. In particular, I
propose Dynamic Partition Assignment as a method to dynamically redis-
tribute work between workers when imbalance is detected at runtime. This
method was implemented on top of an experimental system for data inten-
sive processing, and found to be an effective method to mitigate the effect
of stragglers and improve utilization of resource that would otherwise have
been idle for part of the execution time.

• Allow mitigation of the effects of I/O interference. Unlike data skew or hard-
ware heterogeneity, which can be dealt with upon its occurrence during the
execution of a job, I/O interference has a more complex effect on perfor-
mance. Although it is possible to detect hotspots, any attempt to improve
performance after a hotspot occurs often means discarding some of the work
already done (as there is no way to move in-progress workers without killing
them in current data intensive systems) and/or incurring additional I/O to
relocate data from the hotspot to the resources that the work has been reas-
signed to. As such, it is preferable to be able to use performance prediction
to prevent hotspots from forming and make decisions about worker execution
based on those predictions. I propose a performance model that is able to
predict the effects of I/O interference on data intensive applications, allow-
ing the application or user to make more informed decisions about per-node
parallelism.

• Based on the I/O interference model, I created a tool to allow this model to
be applied to any workload.

1.3 Thesis outline

The remainder of this Ph.D. thesis is structured as follows:

• Chapter 2 provides an introduction to cloud computing, including its history,
primary features, and applications, and how this research pertains to the
features of cloud computing.

• Chapter 3 provides an overview of data intensive distributed systems on
the cloud, focusing on MapReduce and its most popular implementation,
Hadoop. Some alternatives to MapReduce are also discussed.
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• Chapter 4 covers runtime workload balancing and the issues pertaining to
stragglers caused by skew or heterogeneity. The chapter discusses Jumbo,
an experimental distributed data processing system that was created to in-
vestigate these issues, and introduces Dynamic Partition Assignment, my
method for runtime workload balancing based on dynamic reassignment of
work during execution, which is implemented and evaluated using Jumbo.

• Chapter 5 discusses the issue of I/O interference, in particular as it pertains
to per-node parallelism. An I/O performance prediction model is introduced,
which is evaluated for prediction accuracy using MapReduce on a cluster
environment with several representative real-world workloads.

• Chapter 6 introduces Mariom, a framework and toolset developed to allow
the I/O interference model to be applied in production environments.

• Chapter 7 concludes the thesis and discusses future work to be done based
on this research.



Chapter 2

Cloud computing

2.1 Overview

Although the term cloud computing has many conflicting definitions, it is most
commonly defines as the use of computing resources that are provided over a
network, most commonly the Internet. The name is thought to be derived from
the stylized cloud shape that is often used to represent networks or the Internet
in system diagrams. With cloud computing, the data, software and computation
belonging to a user are entrusted to a remote service, often offered by a third party.

Cloud computing enables users to avoid expensive and complex provisioning
of infrastructure and software, instead allowing them to utilize the infrastruc-
ture, platform and software offered by commercial or open source cloud initiatives.
Cloud computing comprises many services and applications, as shown in Figure 2.1.
Cloud computing is often referred to as a form of utility computing, comparing
the model used by cloud computing to that of utilities such as the electricity grid.
Utility computing means that the costs of the service are based on usage, rather
than having to buy infrastructure up front, just like the electricity grid charges
users for the amount of electricity consumed.

Amazon was one of the major drivers of cloud computing, by first modernizing
their internal data centers to use a cloud-like model. After discovering that the new
architecture offered significant benefits and improvements in internal efficiency,
Amazon created a new product to provide cloud services to external customers in
the form of Amazon Web Services [Amaa].

Since 2007, cloud computing has rapidly gained attention and importance, and
has become a new industry buzzword. Figure 2.2 informally shows this increase in
interest by using Google Trends to compare the search volume of the term cloud
computing with grid computing, which it has rapidly overtaken.

10
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Figure 2.1: A logical diagram of cloud computing

Figure 2.2: Search trend for cloud computing according to Google Trends

2.1.1 Types of cloud computing

Cloud computing can take many forms, but the most common service models are
outlined below:

Infrastructure as a Service (IaaS) This is the simplest model of cloud com-
puting. The cloud provider offers the user computers as physical machines
or more typically through the use of virtual machines, as well as other
hardware resources. Virtual machines are executed in hypervisors such as
Xen [BDF+03] or KVM [KKL+07]. Other resources may include raw (block)
and file based storage, firewalls, load balancers, virtual LANs, libraries of
virtual machine images, and software bundles.
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Cloud users must install their own operating system, or use one of the pro-
vided images, to utilize the hardware. Therefore, the user can run any kind
of software configuration desired on any of the machines. This does however
mean that cloud users are responsible for maintaining the operating systems
and software themselves. This service is usually charged as a utility comput-
ing service, with pricing depending on the amount of time you are consuming
the resources.

Examples of Infrastructure as a Service include Amazon EC2 [Ama10], the
Rackspace Open Cloud [Rac] and Windows Azure Virtual Machines [Micc].

Platform as a Service (PaaS) Cloud providers provide a computing platform,
usually including an operating system, APIs, database and web server. End
users develop software solutions that run on top of this platform. This avoids
the complexity of having to manage software configuration manually. Ad-
ditionally, these platforms often offer built-in support for scaling based on
demand.

Examples of Platform as a Service include Amazon Elastic Beanstalk [Amab],
Google App Engine [Gooa], and Windows Azure Compute [Micc].

Software as a Service (SaaS) In this model, cloud providers provide entire
software applications. This software is hosted in the cloud by the provider,
with installation and configuration managed entirely by the provider and
not the user. The user accesses the application through a web browser or a
light-weight client application. Cloud applications are similar in many ways
to traditional web applications, but they often offer far greater scalability,
utilizing load balancers to elastically scale to utilize more machines during
times of high demand.

Examples of Software as a Service include Google Apps [Goob] and Microsoft
Office 365 [Mica].

2.1.2 Cloud deployment models

Clouds can be deployed in several different ways:

Public Cloud Cloud applications, storage, and other resources are made avail-
able for public use by a cloud provider such as Amazon, Microsoft, or Google.

Community Cloud A cloud that is shared by several organizations with com-
mon concerns, managed either internally or by a third party.

Hybrid Cloud A combination of multiple separate clouds (public, community,
or private) that remain unique but are linked together.
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Private Cloud Cloud infrastructure intended for use by a single organization,
managed internally or by a third party.

2.1.3 Features of cloud computing

Cloud computing has several key features. Because cloud computing is a relatively
new field and there is still some confusion over what the term does and does not
entail, it is possible to find different definitions of what a cloud is and what its fea-
tures are. The NIST Definition of Cloud Computing [MG11] defines the following
essential characteristics, which are widely considered to be the key features of a
cloud computing platform:

On-demand self service Users can provision required resources such as com-
puting time and storage automatically without human interaction with the
service provider.

Broad network access The cloud’s capabilities are available over a network
through standard mechanisms that promote the use of heterogeneous thin
and thick client platforms.

Resource pooling The provider’s resources are pooled to support multiple ten-
ants simultaneous, with different physical and virtual resources automati-
cally assigned to different users based on demand without their control or
knowledge.

Rapid elasticity The ability to quickly provision and release resources on de-
mand, in order to respond to rapidly changing increases and decreases of
application demand. From the user’s perspective, resources appear limitless
and can be appropriated at any time.

Measured service Resource usage is controlled and optimized automatically by
the use of metering capability through some level of abstraction appropriate
to the service (e.g. storage, network bandwidth, processing).

Elasticity and multi-tenancy are particular features of interest in the cloud.
Elasticity allows the user to quickly provision seemingly limitless resources based
on demand without the need to commit beforehand to a desired capacity. This
allows e.g. start-ups to respond to unexpectedly rapid growth without needing
the massive investment of acquiring and installing the infrastructure to respond to
such growth. Multi-tenancy means that workloads from multiple organizations and
individuals are multiplexed on the same infrastructure, enabling better utilization.

Cloud computing’s adoption has been largely driven by advances in virtual-
ization. The use of virtual machines allows for rapid configuration of software
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environments irregardless of the actual underlying hardware configuration, and
virtual machines can be assigned and reassigned to different physical hosts accord-
ing to demand and resource availability. Virtual machines of different cloud users
can co-exist on the same physical host without the users being aware of each other
(although in practice, hosting multiple virtual machines on a single physical host
has performance and security implications).

The cloud still offers many challenges for researchers and providers to overcome.
Armbrust et al. [AFG+10] outline challenges and opportunities related to availabil-
ity, lock-in, confidentiality and auditability, data transfer bottlenecks, performance
unpredictability, scalable storage, bugs in large distributed systems, quick scaling,
reputation fate sharing, and software licensing.

2.2 Resource utilization in the cloud

The issues of resource utilization discussed in Section 1.1 are relevant to the cloud.
Particularly the features of resource provisioning, elasticity, multi-tenancy relate
to the topic of resource utilization.

With cloud computing, the user is able to provision resources automatically,
but it is often not clear in advance what resources are required for a particular
workload. In the case of repeatedly executed workload, the user may gain some
intuitive understanding of the behavior of the workload on different types and
amounts of available cloud resources, but for new workloads or variable workloads
this is not so easily answered.

Cloud providers typically offer a wide variety of compute instances, differing
in the speed and number of CPUs available to the virtual machine, the type of
local storage system used (e.g. single hard disk, disk array, SSD storage), whether
the virtual machine may be sharing physical resources with other virtual machines
(possibly belonging to different users), the amount of RAM, network bandwidth,
etc. In addition, the user must decide how many instances of each type to provision.

In the ideal case, more nodes means faster execution, but issues of heterogene-
ity, performance unpredictability, network overhead, and data skew mean that the
actual benefit of utilizing more instances can be less than expected, leading to a
higher cost per work unit. These issues also mean that not all the provisioned re-
sources may be optimally used for the duration of the application. Workload skew
may mean that some of the provisioned resources are (partially) idle and therefore
do no contribute to the performance during those periods, but still contribute to
cost. Provisioning larger or higher performance instances is similarly not always
able to yield a proportional benefit.

Because of these factors, it can be very difficult for a user to translate their per-
formance requirements or objectives into concrete resource specifications for the
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cloud. There have been several works that attempt to bridge this gap, which mostly
focus on VM allocation [HDB11, VCC11a, FBK+12, WBPR12] and determining
good configuration parameters [KPP09, JCR11, HDB11]. Some more recent work
also considers shared resources such as network or data storage [JBC+12], which
is especially relevant in multi-tenant scenarios. Other approaches consider the
provider side of things, because it can be equally difficult for a provider to deter-
mine how to optimally service resource requests [RBG12].

Resource provisioning is complicated further because performance in the cloud
is not always predictable, and known to vary even among seemingly identical
instances [SDQR10, LYKZ10]. There have been attempts to address this by ex-
tending resource provisioning to include requirement specifications for things such
as network performance rather than just the number and type of VMs in an at-
tempt to make the performance more predictable [GAW09, GLW+10, BCKR11,
SSGW11]. Others try to explicitly exploit this variance to improve application
performance [FJV+12].

Accurate provisioning based on application requirements also requires the abil-
ity to understand and predict application performance. There are a number of
approaches towards estimating performance: some are based on simulation [Apad,
WBPG09], while others use information based on workload statistics derived from
debug execution [GCF+10, MBG10] or profiling sample data [TC11, HDB11]. Most
of these approaches still have limited accuracy, especially when it comes to I/O
performance. Cloud platforms run a wide array of heterogeneous workloads which
further complicates this issue [RTG+12].

Related to provisioning is elasticity, which means that it is not always neces-
sary to determine the optimal resource allocation beforehand, since it is possible
to dynamically acquire or release resources during execution based on observed
performance. This suffers from many of the same problems as provisioning, as
it can be difficult to accurately estimate the impact of changing the resources at
runtime, and therefore to decide when to acquire or release resources, and which
ones.

Exploiting elasticity is also further complicated when workloads are statically
divided into tasks, as it is not always possible to preempt those tasks [ADR+12].
Some approaches for improving workload elasticity depend on the characteristics
of certain workloads [ZBSS+10, AAK+11, CZB11], but these characteristics may
not generally apply.

It is therefore clear that it can be very difficult to decide, for either the user
or the provider, how to optimally provision resources and to ensure that those
resources that are provisioned are utilized fully. Their is a very active interest in
improving this situation, and the approaches proposed in this thesis similarly aim
to improve provisioning and elasticity by mitigating common causes of inefficient
resource utilization.



Chapter 3

Data intensive processing on the
cloud

3.1 Introduction

As applications need to deal with increasingly large amounts of data, traditional
relational database systems are no longer able to effeciently handle data at this
scale. In addition to not being able to cope with the immense size of the data
(often terabytes or even petabytes, with exabytes likely not far way), much of the
data being dealt with is unstructured or only partially structured. For example, a
web search engine needs to build an index by processing vast amounts of HTML
data.

Initially, this lead to the creation of many custom distributed applications, but
this is a very complex and error prone process and most people are not experts
in the intricacies of distributed and parallel programming. Debugging distributed
applications is even more difficult, so finding and fixing problems with these custom
solutions was often a costly and time-consuming process.

Additionally, when a large amount of computing resources are used for process-
ing big data, failures are common. This is especially the case because of a trend
in the early 2000s to use large clusters of relatively cheap commodity machines
for this purpose, which was found to be more cost effective than using traditional
high-performance computing solutions, despite the fact that this hardware would
often fail. Not only individual disks and computers are subject to failure, if net-
work switches fail entire racks of machines could become unavailable. Even in
large public clouds, where hardware is often of higher quality than those cheap
commodity clusters, the sheer scale of the systems involved means that failures
are common and must be expected and dealt with.

As a result of how common it is for hardware to fail, it is of paramount im-

16
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portance that the application is able to withstand failures without data loss, and
with only minimal loss of work. In order to ensure this, fault tolerant large scale
data storage is required. And because big data workloads often take many hours
to complete, it is not acceptable if a hardware failure leads to the re-execution of
the entire workload. Instead, the workload should be divided in such a way that
hardware failures lead to only minimal re-execution, and should not lead to com-
plete job failure even if an entire rack is lost or any of the data storage becomes
corrupt.

Writing such highly fault tolerant systems makes creating distributed data pro-
cessing applications even more complicated than it already was, and it is unrea-
sonable to expect most programmers to be able to deal with this. It is no surprise
therefore that generic frameworks for distributed processing have become popular.
These frameworks provide built-in fault tolerance, as well as an easy programming
interface for developers to create distributed applications without worrying about
the difficulties normally associated with this kind of development. Instead, they
only need to worry about solving their particular problem within the framework’s
programming environment.

With the rise of cloud computing, distributed data intensive processing is used
by more and more people, so many of the frameworks that were originally used only
on large in-house clusters are now deployed on the cloud. In this chapter, I will
discuss these frameworks, focusing primarily on MapReduce, which has become
the de facto standard for large scale data processing.

3.2 Distributed data storage

In order to be able to provide reliable data processing, one first needs to have reli-
able data storage. Distributed data storage should be resilient against disk failures,
network failures, or data corruption, ensuring data integrity and availability under
the most common failure conditions. In addition, these storage systems need to
be able to handle the large volumes of often unstructured data that are common
in these kinds of big data processing applications.

3.2.1 Google File System

Probably the most influential recent work in distributed data storage is the Google
File System [GGL03] (GFS). GFS was designed specifically to handle systems
where failures are common, and to handle very large amounts of data typically
stored in very large files.

The Google File System’s architecture was based on the following assumptions,
which were derived from observations about workloads on Google’s production
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and replication decisions using global knowledge. However,
we must minimize its involvement in reads and writes so
that it does not become a bottleneck. Clients never read
and write file data through the master. Instead, a client asks
the master which chunkservers it should contact. It caches
this information for a limited time and interacts with the
chunkservers directly for many subsequent operations.
Let us explain the interactions for a simple read with refer-

ence to Figure 1. First, using the fixed chunk size, the client
translates the file name and byte offset specified by the ap-
plication into a chunk index within the file. Then, it sends
the master a request containing the file name and chunk
index. The master replies with the corresponding chunk
handle and locations of the replicas. The client caches this
information using the file name and chunk index as the key.
The client then sends a request to one of the replicas,

most likely the closest one. The request specifies the chunk
handle and a byte range within that chunk. Further reads
of the same chunk require no more client-master interaction
until the cached information expires or the file is reopened.
In fact, the client typically asks for multiple chunks in the
same request and the master can also include the informa-
tion for chunks immediately following those requested. This
extra information sidesteps several future client-master in-
teractions at practically no extra cost.

2.5 Chunk Size
Chunk size is one of the key design parameters. We have

chosen 64 MB, which is much larger than typical file sys-
tem block sizes. Each chunk replica is stored as a plain
Linux file on a chunkserver and is extended only as needed.
Lazy space allocation avoids wasting space due to internal
fragmentation, perhaps the greatest objection against such
a large chunk size.
A large chunk size offers several important advantages.

First, it reduces clients’ need to interact with the master
because reads and writes on the same chunk require only
one initial request to the master for chunk location informa-
tion. The reduction is especially significant for our work-
loads because applications mostly read and write large files
sequentially. Even for small random reads, the client can
comfortably cache all the chunk location information for a
multi-TB working set. Second, since on a large chunk, a
client is more likely to perform many operations on a given
chunk, it can reduce network overhead by keeping a persis-

tent TCP connection to the chunkserver over an extended
period of time. Third, it reduces the size of the metadata
stored on the master. This allows us to keep the metadata
in memory, which in turn brings other advantages that we
will discuss in Section 2.6.1.
On the other hand, a large chunk size, even with lazy space

allocation, has its disadvantages. A small file consists of a
small number of chunks, perhaps just one. The chunkservers
storing those chunks may become hot spots if many clients
are accessing the same file. In practice, hot spots have not
been a major issue because our applications mostly read
large multi-chunk files sequentially.
However, hot spots did develop when GFS was first used

by a batch-queue system: an executable was written to GFS
as a single-chunk file and then started on hundreds of ma-
chines at the same time. The few chunkservers storing this
executable were overloaded by hundreds of simultaneous re-
quests. We fixed this problem by storing such executables
with a higher replication factor and by making the batch-
queue system stagger application start times. A potential
long-term solution is to allow clients to read data from other
clients in such situations.

2.6 Metadata
The master stores three major types of metadata: the file

and chunk namespaces, the mapping from files to chunks,
and the locations of each chunk’s replicas. All metadata is
kept in the master’s memory. The first two types (names-
paces and file-to-chunk mapping) are also kept persistent by
logging mutations to an operation log stored on the mas-
ter’s local disk and replicated on remote machines. Using
a log allows us to update the master state simply, reliably,
and without risking inconsistencies in the event of a master
crash. The master does not store chunk location informa-
tion persistently. Instead, it asks each chunkserver about its
chunks at master startup and whenever a chunkserver joins
the cluster.

2.6.1 In-Memory Data Structures
Since metadata is stored in memory, master operations are

fast. Furthermore, it is easy and efficient for the master to
periodically scan through its entire state in the background.
This periodic scanning is used to implement chunk garbage
collection, re-replication in the presence of chunkserver fail-
ures, and chunk migration to balance load and disk space

Figure 3.1: GFS Architecture

clusters:

• The system is built from inexpensive commodity hardware that often fails.

• The system stores a modest number of large files.

• Workloads primarily consist of large streaming reads and small random reads.

• Workloads often do large, sequential writes that append data to a file. Writes
to existing offsets in a file are not as common.

• The system must support well-defined semantics for concurrent writers to a
single file.

• High sustained bandwidth is more important than low latency.

Figure 3.1 shows the basic architecture of GFS. File system metadata is stored
by a single GFS master, and file data is divided into large chunks that are stored
on a GFS chunkserver.

The master keeps track of the file system namespace, and the list of chunks that
make up each file. In addition, it stores the list of chunk servers for each chunk.
All file system metadata is kept in memory on the master for fast retrieval, and
any mutations to the namespace are stored in an operation log, which is persisted
on disk and replicated across multiple machines. When the master restarts, it re-
covers file system information by replaying the operation log. In order to minimize
restart time, regular checkpoints are written which allow for faster recovery. These
checkpoints can be created online without halting further file system mutations
while the checkpoint is being made.
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The master does not keep a persistent record of chunk locations. Instead, chunk
servers report which chunks they have upon first contact with the master, from
which it constructs the list.

GFS uses the Chubby lock service [Bur06] to select a master.

Chunks store file system data, and are stored on the chunkservers. Chunks are
replicated on multiple machines. Chunks are typically very large, often 64MB or
more, which is much larger than previous distributed file systems. Using such large
chunks reduces the clients’ need to interact with the master, it can reduce network
overhead by keeping a persistent TCP connection with a chunkserver when a client
performs many operations on a single chunk, and it reduces the metadata stored
on the master. Chunks use checksumming to detect data corruption. If a chunk
replica is lost or detected to be corrupt, the chunk is automatically re-replicated.

When a client reads data, it resolves the file name and offset on the master
to a chunk ID, and then resolves a list of chunk servers for that chunk. It selects
a chunk server to read from (preferably a local or rack-local chunk, if possible),
and contacts it directly. Data transmission does not flow through the master so it
does not become a bottleneck. For writing, a client similarly writes data directly
to a single chunk server, which then forwards the data to the replicas to utilize the
maximum full-duplex bandwidth at each chunkserver.

Replica placement is an important consideration in the fault tolerance and
performance of a system. GFS uses a replica placement policy that ensures that
replicas are always placed on multiple racks so that rack failure does not lead to
data loss.

GFS supports multiple concurrent writers by providing an atomic append op-
eration. The client simply provides the data to write, and GFS decides at what
offset to write it. This way, multiple writers do not hinder each other.

GFS has inspired many similar systems. Most notably, the Hadoop Distributed
File System [Apaa] (HDFS) provides an open source implementation of the GFS
model, which has gained widespread adoption. The Kosmos Distributed Filesys-
tem [Kos] is an alternative that offers strict POSIX compliance as well as Hadoop
compatibility.

3.2.2 Cloud storage

Cloud systems often offer persistent storage with the goals of scalability, high
availability, low latency and low cost.

Amazon S3 [Amad] is the storage service offered on Amazon’s cloud service,
allowing the storage of arbitrary objects up to 5 terabytes organized into buckets.
Windows Azure [Micc] offers blob storage as well as relational storage and non-SQL
others. Other cloud environments often also offer their own persistent storage. For
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commercial cloud platforms, the precise implementation details of these storage
systems are usually not revealed.

3.3 Distributed data processing

The need to process large quantities of often unstructured data has led to the
creation of a number of frameworks for that purpose. Traditional and parallel
relational database systems are unable to cope with the size and nature of the
data, and often also do not offer the reliability guarantees required for such large
scale systems.

A distributed data processing framework offers a programming model to the
user that allows for the easy creation of distributed applications without needing to
worry about the minutiae of the distributed operation. Often this requires breaking
down an application into several steps or operators that can be easily parallelized
by the framework. The framework then provides an execution environment to run
programs written using their programming model in a scalable, fault tolerant way.

3.3.1 MapReduce

The MapReduce [DG10, DG08, DG04] framework was first proposed by Google in
2004, and since then has become the de facto standard for large scale data process-
ing in the cloud. MapReduce has been deployed in a wide variety of environments,
including most cloud environments. For example, Amazon offers Elastic MapRe-
duce [Amac], and Microsoft has begun offering Hadoop on its Windows Azure
cloud solution through Windows Azure HDInsight [Micb].

MapReduce programming model

MapReduce provides a simplified programming model, hiding the details of paral-
lelization, fault tolerance, data distribution and load balancing in a library. The
abstraction for the programming model is based on the map and reduce primitives
present in Lisp and many other functional languages.

A MapReduce computation takes a set of input key/value pairs, and produces
a set of output key/value pairs. The user writes a Map and Reduce function that
operates on these pairs.

Map This function processes a single input key/value pair and produces a set of
intermediate key/value pairs. The MapReduce framework groups together
all intermediate values with the same intermediate key I and passes them to
the Reduce function.
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Reduce This function processes a key I and the set of associated values for that
key. These values are merged together to form a new, possibly smaller, set
of values. Many Reduce functions produce just zero or one output value,
though this is not always the case.

The canonical example MapReduce program used is the problem of counting
the number of occurrences of each word in a large collection of documents. A
pseudo-code version of a program solving that problem using MapReduce is given
below:

map(String key, String value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, "1");

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString(result));

The map function takes each word in the document, and emits an intermediate
key/value pair using the word as the key and the value 1. The reduce function
sums all the counts for a particular word.

Although this pseudo-code uses only string inputs and outputs, conceptually
they can be of any type. Google’s MapReduce implementation passes strings to
the user function, leaving it up to the function to convert them to other types.

MapReduce execution

MapReduce executes by automatically partitioning the input data into M splits
and invoking the Map function for each of them, allowing the splits to be processed
in parallel by multiple machines. Intermediate key/values pairs are partitioned
by key into R pieces using a partitioning function, with each Reduce invocation
processing one of the partitions.

Figure 3.2 shows the general flow of execution in a MapReduce program. The
numbers correspond to the following steps:

1. The MapReduce framework splits the input files into large pieces (e.g. 64MB
per piece). It then starts many copies of the program on a cluster of machines.
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Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.

This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1) Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3

Figure 3.2: MapReduce execution overview

2. One of the program copies acts as the master, while the others are workers
that are assigned work by the master. There are M map and R reduce tasks
to assign.

3. A worker running a map task reads the input split, and parses the key/value
pairs from the input and passes each pair to the map function. The inter-
mediate key/value pairs are buffered in memory.

4. Periodically, the buffers are written to disk, partitioned into R groups by
the partitioning function. The location of these partitions is passed to the
master, which forwards it to the reduce workers.

5. Reduce workers use remote procedure calls to read the intermediate data
from the local disks of map workers. When all intermediate data is read, it
is sorted by key so that all identical keys are grouped together. An external
sort is used if the data does not fit in memory.

6. The reduce worker iterates over the data for each unique key, passing the
key and its set of values to the reduce function. The output of the reduce
function is appended to the final output.

7. The master notifies the user program of the job completion.
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MapReduce uses the Google File System described in Section 3.2.1 for input
and output storage (intermediate data is stored on the local disk for each worker).
GFS divides files into chunks which are replicated (typically three copies), and
these chunks provide natural splits for the map tasks. The master uses information
about the location of each chunk when scheduling map tasks, and attempts to
schedule a map task on a machine containing a replica of that chunk. If that fails,
it attempts to schedule the map task on a machine near a machine containing a
replica of that chunk (e.g. a machine in the same rack).

Fault tolerance is handled by the master. Each worker sends a periodic heart-
beat to the master, and failure to receive a response from a worker for a certain
time indicates failure of the worker. Any map tasks executed by that worker must
be re-executed. This includes completed map tasks because their output is stored
on the local disk, and may therefore not be available anymore if a machine running
a worker fails. This is not necessary for reduce tasks because their output is stored
on the distributed file system.

It is possible to handle master failure by having it write periodic checkpoints,
but Google’s implementation of MapReduce does not do this.

In the case of failures it is possible that a task gets executed multiple times.
In this case, MapReduce relies on atomic commits of task completions to ensure
that only one copy of the output is retained. Reduce tasks write to private output
files that are moved to the final output only once the task successfully commits.

MapReduce handles stragglers by scheduling backup tasks of the remaining
in-progress tasks when the job gets close to completion. This means that tasks
running on cluster nodes that are performing badly (e.g. because of CPU, mem-
ory, local disk, or network interference) are simultaneously executed on different
machines, using whichever task finishes first as the final output.

In some cases, there is a lot of repetition in keys in the output of a single
map class. In the case of a reducer that significantly reduces the set of values for a
particular key, it can be beneficial to run the reducer locally to reduce intermediate
data size, and therefore network traffic. This type of usage of a reduce function is
called a Combiner function. It requires that the reduce function is commutative
and associative. Note that it is not required for the combiner and reduce function
to be the same for a given workload.

MapReduce criticisms

Since its original inception, MapReduce has become the de facto standard for large
scale data processing. As a result, it is being used for a wide variety of workloads far
beyond what it was originally designed for. Some of these workloads are not well-
suited for the MapReduce paradigm, particularly if these workloads are the kind
of workloads traditionally done by relational databases. Many of these workloads
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Figure 3.3: Hadoop MapReduce architecture

can benefit from the ability to utilize indices or native join support, which most
implementations of MapReduce do not offer.

As a result, MapReduce has been criticized for adding unnecessary overhead
to many computation jobs, with parallel database systems often outperforming
common MapReduce implementations such as Hadoop by a factor of ten for typical
relational workloads [PPR+09].

However, this criticism is not necessarily fair, as it depends primarily on the
MapReduce implementation (most of which are based directly on Google’s orig-
inal description so do not offer improvements such as indices that these kinds
of workloads have been optimized for. Works such as Hadoop++ [DQRJ+10,
JQRD11] and HadoopDB [ABPA+09] add relational database features like index-
ing to MapReduce, alleviating most of these criticisms.

Hadoop

Hadoop [Apaa] provides an open source implementation of the MapReduce pro-
gramming model and execution framework, largely following the description pre-
sented above.

Hadoop uses a centralized Jobtracker that is responsible for handling sub-
mission and execution of jobs, including scheduling of workers and tasks. Each
node in the cluster runs a Tasktracker daemon that communicates with the Job-
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tracker, and is responsible for executing workers on that node. The architecture
of Hadoop’s MapReduce implementation is shown in Figure 3.3. Note that this is
based on the current stable branch of Hadoop (Hadoop 1.0, based on the Hadoop
0.20 codebase).

The architecture of the current alpha version of Hadoop (Hadoop 2.0, based
on the Hadoop 0.23 codebase) is very different. This architecture, called Hadoop
YARN, uses a centralized resource scheduler called the ResourceManager, but
leaves the details of job progress and fault tolerance to application specific Applica-
tionMasters. Hadoop YARN is therefore closer to the original Google MapReduce
implementation than the current stable versions of Hadoop.

Hadoop typically uses the Hadoop Distributed File System (HDFS), which is
an open source GFS-like file system, for storage of input and output files. However,
Hadoop supports using other storage mechanisms in place of HDFS as long as there
exists an implementation of Hadoop’s abstract Filesystem interface for them.

Hadoop was originally created by Doug Cutting while he was working at Ya-
hoo! as infrastructure for the Nutch open source web search engine [KCSR04].
Hadoop has gained wide spread adoption and is used among others by Yahoo!,
Amazon, Facebook, Twitter, and LinkedIn. Hadoop is supported on many cloud
environments and is the most common MapReduce implementation used across
the industry, and therefore the de facto standard distributed data processing ap-
plication currently in use.

MapReduce ecosystem

Because of MapReduce’s popularity, a large amount of related projects have sprung
up. Many of these use Hadoop as the underlying MapReduce implementation.

• HBase [Apab] is an open source, non-relational distributed database modeled
after Google’s Bigtable [CDG+08]. It uses HDFS to store the database,
and supports large scale processing jobs through Hadoop MapReduce using
HBase both as a source and sink.

• Hive [TSJ+09] is a data warehousing solution for Hadoop.

• ZooKeeper [HKJR10] is a high performance distributed coordination service
that can be used to manage Hadoop deployments.

• Mahout [Apac] is a library of machine learning algorithms for MapReduce,
implemented on Hadoop.

• Pig [ORS+08] provides a procedural data processing language that gets com-
piled down into Hadoop MapReduce programs.
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At run time each channel is used to transport a finite se-
quence of structured items. This channel abstraction has
several concrete implementations that use shared memory,
TCP pipes, or files temporarily persisted in a file system.
As far as the program in each vertex is concerned, channels
produce and consume heap objects that inherit from a base
type. This means that a vertex program reads and writes its
data in the same way regardless of whether a channel seri-
alizes its data to buffers on a disk or TCP stream, or passes
object pointers directly via shared memory. The Dryad sys-
tem does not include any native data model for serializa-
tion and the concrete type of an item is left entirely up to
applications, which can supply their own serialization and
deserialization routines. This decision allows us to support
applications that operate directly on existing data includ-
ing exported SQL tables and textual log files. In practice
most applications use one of a small set of library item types
that we supply such as newline-terminated text strings and
tuples of base types.

A schematic of the Dryad system organization is shown
in Figure 1. A Dryad job is coordinated by a process called
the “job manager” (denoted JM in the figure) that runs
either within the cluster or on a user’s workstation with
network access to the cluster. The job manager contains
the application-specific code to construct the job’s commu-
nication graph along with library code to schedule the work
across the available resources. All data is sent directly be-
tween vertices and thus the job manager is only responsible
for control decisions and is not a bottleneck for any data
transfers.

Files, FIFO, Network
Job schedule Data plane

Control plane

D D DNS

V V V

JM

Figure 1: The Dryad system organization. The job manager (JM)
consults the name server (NS) to discover the list of available com-
puters. It maintains the job graph and schedules running vertices (V)
as computers become available using the daemon (D) as a proxy.
Vertices exchange data through files, TCP pipes, or shared-memory
channels. The shaded bar indicates the vertices in the job that are
currently running.

The cluster has a name server (NS) that can be used to
enumerate all the available computers. The name server
also exposes the position of each computer within the net-
work topology so that scheduling decisions can take account
of locality. There is a simple daemon (D) running on each
computer in the cluster that is responsible for creating pro-
cesses on behalf of the job manager. The first time a vertex
(V) is executed on a computer its binary is sent from the job
manager to the daemon and subsequently it is executed from
a cache. The daemon acts as a proxy so that the job man-
ager can communicate with the remote vertices and monitor
the state of the computation and how much data has been

read and written on its channels. It is straightforward to run
a name server and a set of daemons on a user workstation
to simulate a cluster and thus run an entire job locally while
debugging.

A simple task scheduler is used to queue batch jobs. We
use a distributed storage system, not described here, that
shares with the Google File System [21] the property that
large files can be broken into small pieces that are replicated
and distributed across the local disks of the cluster comput-
ers. Dryad also supports the use of NTFS for accessing files
directly on local computers, which can be convenient for
small clusters with low management overhead.

2.1 An example SQL query
In this section, we describe a concrete example of a Dryad

application that will be further developed throughout the re-
mainder of the paper. The task we have chosen is representa-
tive of a new class of eScience applications, where scientific
investigation is performed by processing large amounts of
data available in digital form [24]. The database that we
use is derived from the Sloan Digital Sky Survey (SDSS),
available online at http://skyserver.sdss.org.

We chose the most time consuming query (Q18) from a
published study based on this database [23]. The task is to
identify a “gravitational lens” effect: it finds all the objects
in the database that have neighboring objects within 30 arc
seconds such that at least one of the neighbors has a color
similar to the primary object’s color. The query can be
expressed in SQL as:

select distinct p.objID
from photoObjAll p
join neighbors n — call this join “X”
on p.objID = n.objID
and n.objID < n.neighborObjID
and p.mode = 1

join photoObjAll l — call this join “Y”
on l.objid = n.neighborObjID
and l.mode = 1
and abs((p.u-p.g)-(l.u-l.g))<0.05
and abs((p.g-p.r)-(l.g-l.r))<0.05
and abs((p.r-p.i)-(l.r-l.i))<0.05
and abs((p.i-p.z)-(l.i-l.z))<0.05

There are two tables involved. The first, photoObjAll
has 354,254,163 records, one for each identified astronomical
object, keyed by a unique identifier objID. These records
also include the object’s color, as a magnitude (logarithmic
brightness) in five bands: u, g, r, i and z. The second table,
neighbors has 2,803,165,372 records, one for each object
located within 30 arc seconds of another object. The mode
predicates in the query select only “primary” objects. The
< predicate eliminates duplication caused by the neighbors
relationship being symmetric. The output of joins “X” and
“Y” are 932,820,679 and 83,798 records respectively, and the
final hash emits 83,050 records.

The query uses only a few columns from the tables (the
complete photoObjAll table contains 2KBytes per record).
When executed by SQLServer the query uses an index on
photoObjAll keyed by objID with additional columns for
mode, u, g, r, i and z, and an index on neighbors keyed by
objID with an additional neighborObjID column. SQL-
Server reads just these indexes, leaving the remainder of the
tables’ data resting quietly on disk. (In our experimental
setup we in fact omitted unused columns from the table, to
avoid transporting the entire multi-terabyte database across

Figure 3.4: Dryad system organization

• Jaql [BEG+11] provides a declarative scripting language for data processing
based on Javascript that is also executed using Hadoop MapReduce.

This is just a small sampling of the many projects related to MapReduce that
have sprung up as its popularity has increased over the last several years.

3.3.2 Alternatives to MapReduce

Although MapReduce is by far the most prolific framework for large scale data
processing, some alternative approaches have been proposed. Despite the advan-
tages that some of these approaches have over MapReduce, they have never gained
any real traction in the community.

Microsoft Dryad

Dryad [IBY+07] represents a more flexible approach to parallel and distributed
programming. Whereas MapReduce uses a rigid structure of a map function con-
nected to a reduce function, Dryad represents jobs as a directed acyclic graph,
where vertices represent programs and edges represent communication channels
between those programs. Vertex programs are automatically scheduled to run on
a cluster of machines, and there may be far more vertices in a graph than there
are nodes in the cluster. Vertex programs can perform almost any operation, and
can be structured into complex graphs allowing for a far more flexible, but also
more complicated, approach to structuring parallel workloads.

Channels between vertex programs are used to transport a set of items. Chan-
nels are an abstraction for which Dryad provides several implementations, includ-
ing shared memory (for processes on the same machine), TCP pipes, or temporary
files persisted on a file system. The vertex programs themselves are agnostic of
the underlying channel implementation.
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Figure 3: The operators of the graph description language. Circles are vertices and arrows are graph edges. A triangle at the bottom of a
vertex indicates an input and one at the top indicates an output. Boxes (a) and (b) demonstrate cloning individual vertices using the ^ operator.
The two standard connection operations are pointwise composition using >= shown in (c) and complete bipartite composition using >> shown in
(d). (e) illustrates a merge using ||. The second line of the figure shows more complex patterns. The merge in (g) makes use of a “subroutine”
from (f) and demonstrates a bypass operation. For example, each A vertex might output a summary of its input to C which aggregates them
and forwards the global statistics to every B. Together the B vertices can then distribute the original dataset (received from A) into balanced
partitions. An asymmetric fork/join is shown in (h).

3.3 Merging two graphs
The final operation in the language is ||, which merges

two graphs. C = A || B creates a new graph:

C = 〈VA ⊕∗ VB, EA ∪EB, IA ∪∗ IB, OA ∪∗ OB〉
where, in contrast to the composition operations, it is not
required that A and B be disjoint. VA ⊕∗ VB is the con-
catenation of VA and VB with duplicates removed from the
second sequence. IA∪∗ IB means the union of A and B’s in-
puts, minus any vertex that has an incoming edge following
the merge (and similarly for the output case). If a vertex
is contained in VA ∩ VB its input and output edges are con-
catenated so that the edges in EA occur first (with lower
port numbers). This simplification forbids certain graphs
with “crossover” edges, however we have not found this re-
striction to be a problem in practice. The invariant that the
merged graph be acyclic is enforced by a run-time check.

The merge operation is extremely powerful and makes it
easy to construct typical patterns of communication such as
fork/join and bypass as shown in Figures 3(f)–(h). It also
provides the mechanism for assembling a graph “by hand”
from a collection of vertices and edges. So for example, a
tree with four vertices a, b, c, and d might be constructed
as G = (a>=b) || (b>=c) || (b>=d).

The graph builder program to construct the query graph
in Figure 2 is shown in Figure 4.

3.4 Channel types
By default each channel is implemented using a tempo-

rary file: the producer writes to disk (typically on its local
computer) and the consumer reads from that file.

In many cases multiple vertices will fit within the re-
sources of a single computer so it makes sense to execute
them all within the same process. The graph language has
an “encapsulation” command that takes a graph G and re-
turns a new vertex vG. When vG is run as a vertex pro-
gram, the job manager passes it a serialization of G as an
invocation parameter, and it runs all the vertices of G si-
multaneously within the same process, connected by edges
implemented using shared-memory FIFOs. While it would
always be possible to write a custom vertex program with
the same semantics as G, allowing encapsulation makes it ef-
ficient to combine simple library vertices at the graph layer
rather than re-implementing their functionality as a new
vertex program.

Sometimes it is desirable to place two vertices in the same
process even though they cannot be collapsed into a single
graph vertex from the perspective of the scheduler. For ex-
ample, in Figure 2 the performance can be improved by
placing the first D vertex in the same process as the first
four M and S vertices and thus avoiding some disk I/O,
however the S vertices cannot be started until all of the D
vertices complete.

When creating a set of graph edges, the user can option-
ally specify the transport protocol to be used. The available
protocols are listed in Table 1. Vertices that are connected
using shared-memory channels are executed within a single
process, though they are individually started as their inputs
become available and individually report completion.

Because the dataflow graph is acyclic, scheduling dead-
lock is impossible when all channels are either written to
temporary files or use shared-memory FIFOs hidden within

Figure 3.5: Dryad graph description language operators

Figure 3.4 shows the system organization of Dryad. The job manager (JM)
consults with a name server (NS) to enumerate the list of available computers and
discover their topology. A simple daemon (D) is running on each computer that
is responsible for executing vertex programs (V) on behalf of the job manager.

Dryad’s power comes from the flexibility in creating graphs. Dryad uses a
simple language for describing common communication paradigms embedded into
C++ using a combination of method calls and operator overloading. Figure 3.5
shows the operators of the graph description language. Boxes (a) and (b) show the
cloning of vertices, communication between vertices is shown in (c) using point-wise
composition and in (d) using complete bipartite composition, and (e) demonstrates
a merge. Boxes (f), (g) and (h) show more complex patterns of composition.

A simpler method to construct Dryad jobs is offered by DryadLINQ [YIF+08],
which uses the Language INtegrated Query (LINQ) functionality of Microsoft .Net.
With DryadLINQ, LINQ queries are automatically compiled down to Dryad job
graphs.

Nephele

Nephele [WK09] is a platform for distributed programming that bears a strong
resemblance to Microsoft’s Dryad. Nephele similarly specifies a job as a directed
acyclic graph. However, unlike Dryad where the graph’s vertices represent exactly
one program instance and graph modifications must be manually applied in order
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Figure 3: An Execution Graph created from the
original Job Graph

only modeled implicitly as they do not represent any physi-
cal communication paths during the job processing. For the
sake of presentation, they are also omitted in Figure 3.

In order to ensure cost-efficient execution on a compute
cloud, Nephele allows to allocate instances in the course of
the processing job, when some (sub)tasks have already been
completed or are already running. However, this just-in-
time allocation can also cause problems, since there is the
risk that the requested instance types are temporarily not
available in the cloud. To cope with this problem, Nephele
separates the Execution Graph into one or more so-called
Execution Stages. An Execution Stage must contain at least
one Group Vertex. Its processing can only start when all
of its preceding stages (i.e. the subtasks included in the re-
spective Group Vertices) have been successfully processed.
Based on this Nephele’s scheduler ensures the following three
properties for the entire job execution: First, when the pro-
cessing of a stage begins, all instances required within the
stage are allocated. Second, all subtasks included in this
stage are set up (i.e. sent to the corresponding Task Man-
agers along with their required libraries) and ready to receive
records. Third, before the processing of a new stage, all in-
termediate results of its preceding stages are stored in a per-
sistent manner. Hence, Execution Stages can be compared
to checkpoints. In case a sufficient number of resources can-
not be allocated for the next stage, they allow a running job
to be interrupted and later on restored when enough spare
resources have become available.

The concrete level of the Execution Graph refines the job
schedule to include subtasks and their communication chan-
nels. In Nephele, every task is transformed into either ex-
actly one, or, if the task is suitable for parallel execution, at
least one subtask. For a task to complete successfully, each
of its subtasks must be successfully processed by a Task
Manager. Subtasks are represented by so-called Execution
Vertices in the Execution Graph. They can be considered
the most fine-grained executable job unit. To simplify man-
agement, each Execution Vertex is always controlled by its
corresponding Group Vertex.

Nephele allows each task to be executed on its own in-
stance type, so the characteristics of the requested virtual
machines can be adapted to the demands of the current
processing phase. To reflect this relation in the Execution
Graph, each subtask must be mapped to a so-called Execu-
tion Instance. An Execution Instance is defined by an ID
and an instance type representing the hardware characteris-
tics of the corresponding virtual machine. It is a scheduling
stub that determines which subtasks have to run on what
instance (type). We expect a list of available instance types
together with their cost per time unit to be accessible for
Nephele’s scheduler and instance types to be referable by
simple identifier strings like “m1.small”.

Before beginning to process a new Execution Stage, the
scheduler collects all Execution Instances from that stage
and tries to replace them with matching cloud instances.
If all required instances could be allocated the subtasks are
sent to the corresponding instances and set up for execution.

On the concrete level, the Execution Graph inherits the
edges from the abstract level, i.e. edges between Group Ver-
tices are translated into edges between Execution Vertices.
In case of parallel task execution, when a Group Vertex
contains more than one Execution Vertex, the developer of
the consuming task can implement an interface which deter-
mines how to connect the two different groups of sub tasks.

Nephele requires all edges of an Execution Graph to be
replaced by a channel before processing can begin. The type
of the channel determines how records are transported from
one subtask to the other. Currently, Nephele features three
different types of channels, which all put different constrains
on the Execution Graph.

• Network channels: A network channel lets two sub-
tasks exchange data via a TCP connection. Network
channels allow pipelined processing, so the records emit-
ted by the producing subtask are immediately trans-
ported to the consuming subtask. As a result, two
subtasks connected via a network channel may be exe-
cuted on different instances. However, since they must
be executed at the same time, they are required to run
in the same Execution Stage.

• In-Memory channels: Similar to a network chan-
nel, an in-memory channel also enables pipelined pro-
cessing. However, instead of using a TCP connection,
the respective subtasks exchange data using the in-
stance’s main memory. Transporting records through
in-memory channels is typically the fastest way to trans-
port records in Nephele, however, it also implies the
most scheduling restrictions: The two connected sub-
tasks must be scheduled to run on the same instance
and run and in the same Execution Stage.

• File channels: A file channel allows two subtasks to
exchange records via the local file system. The records
of the producing task are first entirely written to an
intermediate file and afterwards read into the consum-
ing subtask. Nephele requires two such subtasks to
be assigned to the same instance. Moreover, the con-
suming group vertex must be scheduled to run in a
higher Execution Stage than the producing group ver-
tex. In general, Nephele only allows subtasks to ex-
change records across different stages via file channels
because they are the only channel types which store
the intermediate records in a persistent manner.

Figure 3.6: Example of a Nephele execution graph

to create parallelization, Nephele allows the user to specify for each vertex whether
it is suitable for parallelization, in which case the task is automatically divided
into subtasks by the Nephele engine. Nephele also allows annotations to specify
for example the node instance type that is best suited for a specific task.

Like with Dryad, Nephele’s job structure allows each vertex to have multiple
inputs and outputs, making it much easier to represent certain operators than with
MapReduce.

When executing a job, the job structure is transformed into a job execution
graph, which contains concrete information about subtasks and communication
channels between tasks. Execution graphs are divided into stages for scheduling,
where each stage can only be scheduled when the preceding stage is entirely com-
plete, and Nephele ensures all instances required for a stage are allocated before it
begins processing. An example of a Nephele execution graph is given in Figure 3.6.

PACTS [BEH+10] is a programming model for Nephele that extends the Map-
Reduce model with additional operators and output contracts for task programs,
enabling better optimization opportunities than solutions like Pig that target
MapReduce directly.

SCOPE

SCOPE [CJkL+08, ZBW+12] is a parallel processing system that combines benefits
from both parallel databases and MapReduce-style systems.

Similar to parallel databases, the system has a SQL-like declarative scripting
language with no explicit parallelism, while being amenable to efficient parallel
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execution on large clusters. An optimizer is responsible for converting scripts
into efficient execution plans for the distributed computation engine. A physical
execution plan consists of a directed acyclic graph of vertices. Execution of the plan
is orchestrated by a job manager that schedules execution on available machines
and provides fault tolerance and recovery, much like MapReduce systems.

SCOPE executes on top of the Cosmos distributed execution engine, a system
developed for internal use by Microsoft with similar design goals as MapReduce.
Cosmos also forms the basis for Dryad.

3.3.3 Extensions to MapReduce

Besides complete alternatives to MapReduce, MapReduce has also been extended
and adapted for many purposes.

Indexing and relational features

Based on the criticisms in [PPR+09], MapReduce has been extended to incorporate
features like indexing and join support.

HadoopDB [ABPA+09] implements the MapReduce programming model on
top of a distributed relational database engine, providing intrinsic support for
many features Hadoop and other implementations of MapReduce lack.

Hadoop++ [DQRJ+10] introduces join-oriented indices into Hadoop DFS files,
enabled MapReduce programs to transparently utilize these indices without need-
ing to be modified. This approach is extended further to utilize Hadoop DFS’s
replication to introduce different indices in each replica, so that the optimal one
can be chosen based on the job’s data access pattern [JQRD11].

An alternative approach is to translate MapReduce programs into SQL to
execute against a relational database [IZ10].

Cheetah [Che10] and ES2 [CCG+11] propose the utilization of column-based
stores for MapReduce. Similarly, another work [FPST11] creates a separate phys-
ical file for each attribute.

Iterative processing

A number of works extend MapReduce with support for iterative computations.

HaLoop [BHBE10] extends the MapReduce programming model with support
for iterative computations, and increases their efficiency by making the task sched-
uler loop aware and adding various caching mechanisms.

The iMapReduce framework [ZGGW11a] supports iterative computation and
avoids re-shuffling static data without modifying the scheduler.
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Twister [ELZ+10] utilizes a light-weight MapReduce runtime with all opera-
tions performed in memory.

PrIter [ZGGW11b] enables fast iterative computation by providing the support
of prioritized iteration. Instead of performing computations on all data records
without discrimination, PrIter prioritizes the computations that help convergence
the most, so that the convergence speed of iterative process is significantly im-
proved.



Chapter 4

Runtime workload balancing for
data intensive applications

4.1 Introduction

Cloud applications operating on big data are usually divided into a number of
workers, which are executed in a distributed fashion on the nodes of the cluster.
In the case of MapReduce these workers execute map and reduce tasks. There
are typically a large number of workers; far more than the cluster can execute
simultaneously. In a typical MapReduce workload the number of map tasks may
be orders of magnitude larger than the number of nodes, and while the number of
reduce tasks is usually lower it will still usually be equal to the number of nodes
or a small multiple of that. Each worker is responsible for processing a part of the
job’s data. Map tasks process a part of the input data (an input split), and reduce
tasks process a partition of the intermediate data.

If workers don’t take the same amount of time to execute, they are said to be
skewed. There are a number of reasons why skew can occur between workers:

• Data skew means that not all tasks process the same amount of data. Those
tasks that process more input data will likely take longer to execute. Data
skew can occur due to the properties of the input data, but also for example
due to a poor choice of partitioning function.

• Processing skew occurs when not all records in the data take the same amount
of time to process. Even if the tasks process the same amount of data and
records, there can still be a large discrepancy in their execution times.

• Performance heterogeneity can mean that even when tasks the same amount
of work, they may not take the same amount of time. This may occur

31
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because the computing resources in the cluster are actually heterogeneous,
with some nodes having faster CPUs, more network bandwidth, more RAM,
or more and faster disks than others. These nodes will be able to process
data faster than the others, and run the same tasks faster. Even identical
nodes can suffer from performance heterogeneity because of interference from
background tasks, network congestion, or in the case of a virtual machine
running in the cloud, interference from other virtual machines sharing the
same host. This problem can also occur across machines, as a worker that
needs to transfer data from a machine on a different rack may have less
bandwidth available than a worker that only needs to transfer data from the
same rack or even the local host.

The end result of these factors is that there can be a large variation between
the execution time of the workers. When this occurs, some workers may hold up
the execution time of the entire job, either because other workers cannot proceed
until they are finished, or because they are simply the last workers in the job.
These stragglers can dominate the execution time of a workload, and this is a
known problem for MapReduce and similar data processing frameworks.

Whenever there are stragglers, it means that there are resources in the cluster
that are not being utilized while they are waiting for the stragglers to complete.
However, since these resources are still provisioned for your application, under
the cloud’s typical payment model you are still paying for them even though they
are not actively being used. Dynamically releasing unneeded resources and re-
acquiring them later when needed again is difficult due to the typical setup time
of compute instances, and even when currently unused the resources may still
be necessary for completion of the job (for example, they may hold part of the
intermediate data).

Although it is possible to utilize the idle resources for other workloads if there
are multiple workloads (possibly belonging to multiple users) in the system, it can
still be problematic to meet performance guarantees or QoS specifications for a
particular job when workload imbalance occurs.

Google’s MapReduce implementation [DG04] tries to deal with the problem
of stragglers by scheduling backup tasks; basically, if a job is nearing its end and
certain tasks are taking longer than expected, backup instances of those same
tasks will be executed by different workers in the hope that they can finish them
faster. Hadoop, the most commonly used MapReduce implementation, uses the
same strategy and calls it speculative execution.

Speculative execution can be an effective way to combat task skew caused by
performance heterogeneity, as it is indeed possible for other machines to finish the
same tasks faster. But in the case of data skew or processing skew the backup
task will take the same amount of time as the primary task, and since it was
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started later it will not finish before the primary. In this case, the backup task
does completely redundant work which will be discarded once the primary finishes.
Even if the backup task does improve performance, duplicate work was performed
by the primary which will be discarded once the backup finishes. In the worst case,
a backup task may add additional network overhead or interfere with other tasks on
the node running the speculative task, actually diminishing overall performance.

There are some ways to try and prevent stragglers before executing the work-
load. Data skew can be determined by sampling the input beforehand and adjust-
ing e.g. the partitioning function to compensate. This is much more difficult for
processing skew because the characteristics that make a record more computation-
ally intensive to process may be difficult to determine automatically. In any case,
this requires an additional sampling step that adds to the overall execution time.

Performance heterogeneity can be addressed by utilizing knowledge about the
physical system configuration, but this is often not available for cloud users,
and even compute instances with identical specifications can perform very dif-
ferently [SDQR10]. An alternative is to utilize performance measurements, but
this can only account for static differences between the nodes (for example, faster
CPU or more memory). It cannot account for performance differences caused by
temporary environmental factors such as interference from other tasks or network
congestion.

It is therefore preferable to be able to mitigate workload imbalance when it
occurs. That way, all factors can be accounted for and no a priori knowledge
about the data or systems is necessary.

In this chapter, I describe issues in workload balancing as they pertain to
MapReduce, and propose Dynamic Partition Assignment, a method of dynami-
cally redistributing workload in response to imbalance in the reduce phase while
maintaining the efficiency of large transfers.

4.2 Related work

The performance of MapReduce remains an area of very active research inter-
est [JOSW10, PPR+09, SAD+10].

The problem of stragglers was first noted in the original paper on MapReduce
by Dean and Ghemawat [DG04], which proposes the use of backup tasks (called
speculative execution in Hadoop) to run additional copies of stragglers so that
those copies may be able to finish faster. Zaharia et al. [ZKJ+08] improve the
use of speculative tasks specifically for heterogeneous environments. Anantha-
narayanan et al. [AKG+10] developed a method to improve the decision process
of whether to restart a task or use speculative execution. Guo et al. [GF12] look
at speculative execution and resource stealing particularly in the situation where
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there are fewer tasks than cluster resources. Yang et al. [YYTM10] propose a
technique for handling data skew in the map phase only.

Many of the existing methods methods that attempt to deal with skew in
MapReduce such as[KBHR10, ORS+08, RLC+12, TSJ+09] rely on executing a
job twice, at least partially. The first execution samples the data to determine
its distribution. Because partitioning actually happens on the output of the map
functions, such sampling techniques must necessarily execute the map function to
sample the intermediate data rather than the map functions. These methods rely
on well-known sampling techniques studied in the database community [MRL99,
MBLL07, HBK05].

Techniques that rely on sampling are capable of dealing with data skew, but
incur overhead before a job to perform the sampling. Additionally, unless the
job’s computations are fully performed on all sampled records, they cannot iden-
tify processing skew (and even if it can be identified, processing skew is likely to
depend on the value rather than the key, making it difficult to adjust partitioning
to alleviate processing skew). Unless knowledge of the hardware environment is
incorporated, these methods can also not deal with performance heterogeneity.

Sailfish [RRS+12] avoids the sampling step by recording statistics during actual
job execution and maintaining an index for each partition that allows it to split
them further across multiple workers. The number of workers per partition is
decided at runtime based on partition size. However, this means that reduce
workers cannot start until the map workers have finished, and it is also not able
to deal with processing skew or performance heterogeneity.

Vernica et al. [VBBE12] use an alternative approach, where the number of
partitions is fixed but the partitioning function is constructed dynamically so that
the partitions will be balanced. This approach can only be used for data skew.

Ramakrisnan et al. [RSU12] address the problem of large keys by using a
method to split large keys into multiple partitions which can be done if the re-
duce function is associative and commutative (the same as the requirements for
a combiner function). Progressive sampling is used to identify the large keys.
This approach then uses key packing to distribute work across reducers, treating
partitioning as a bin packing problem rather than more traditional partitioning
approaches. Since this is based on the size of the keys, it is also only applicable
for data skew.

SkewTune [KBHR12] uses an approach to mitigating skew that uses a similar
lazy skew detection method as my approach and dynamically redistributes the
workload by creating new tasks to process the additional partitions. The drawback
of this approach is that it must read and re-partition an entire input partition at
the moment skew is detected, which is potentially an expensive and I/O intensive
operation.

Workload balancing and skew mitigation in general are widely studied in the
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context of database systems [WDJ91, DNS+92, SN95, PI+96, TK99, GTOK02,
XK09]. Most of these efforts are related to joins and parallel aggregation. Some
of these mechanisms can be adapted for use on MapReduce. For example, the Pig
system includes a SkewedJoin [GNC+09] based on [DNS+92].

FLUX [SHB04] uses an approach quite similar to my own to divide query
operators into mini-partitions. However, this approach is aimed principally at
fault tolerance rather than skew mitigation, and suffers from well-known issues
with creating many small tasks [KBHR10], which my approach avoids.

Load balancing in the cloud has also been extensively studied. Randles et
al. [RLTB10] provide an overview of workload balancing mechanisms employed in
the cloud.

4.3 Workload imbalance issues in MapReduce

4.3.1 Map stage

A typical MapReduce job consists of a large number of map tasks. These map tasks
are scheduled to run on nodes in a greedy fashion. The scheduler prefers to run a
task on the node where its input block is located. However, if this can’t be done
a map task will always be scheduled on a node if there is capacity available and
map tasks remaining. Until the job runs out of map tasks to schedule, stragglers
are not an issue.

There are some special circumstances that can cause execution time skew be-
tween map tasks. Locality may play a role, as tasks that must read their input
data remotely may perform slower than those that can read from local disk. Data
placement and the scheduler’s ability to schedule map tasks on the same node
as their input data can therefore affect individual task performance. Data skew,
particularly skew in the size of a map task’s output data, can cause large variance.
Intermediate key/value pairs are collected in a buffer, which is periodically sorted
and spilled to disk. If a map task’s output does not fit in the buffer, multiple
spills are necessary which must be merged to create the map task’s final output.
Tasks that need to perform such a merge can be significantly slower than tasks
that don’t.

Additionally, even if the tasks are all identical in terms of the amount of pro-
cessing performed, I have found interference from running multiple tasks in parallel
on the same node can cause their execution times to vary wildly.

Once there are no more tasks to schedule for the job, the remaining map tasks
may become stragglers and hold up execution of the reduce tasks. Because the
MapReduce framework relies on sorting to group the records by key, a reduce task
cannot begin to process its records until all intermediate data has been transferred
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Figure 4.1: Workload imbalance from stragglers in MapReduce

and sorted, which means all map tasks must finish first. While reduce tasks can
be scheduled to run while there are still unfinished map tasks for the job, they
can only shuffle and sort, but not yet begin processing the reduce function. As a
result, some of the resources of the cluster are likely idle while the job waits for the
remaining map tasks. This situation is depicted in Figure 4.1, which shows that
node A is (partially) idle while waiting for the final map task to finish on node B.
The reduce tasks on both nodes cannot start reduce function processing until that
final task is completed.

While stragglers may be an issue for map tasks, there are several factors that
mitigate their effect:

• There are typically a very large number of map tasks (often orders of mag-
nitude more than the cluster can execute simultaneously). This means that
performance heterogeneity is automatically addressed, as those machines
that are able to process tasks faster will simply process more tasks.

• The individual tasks are relatively short compared to the overall duration of
the workload, so the amount of idle time at the end of the map phase caused
by stragglers is also relatively short. If the task skew is extremely severe,
this may not be the case.

• Because map tasks process fixed size input splits, it is common for most of
the map tasks to process very similar amounts of data, so data skew should
be limited. Hadoop also sorts map tasks by their data size, executing the
smallest tasks last, again mitigating the effect of stragglers.

4.3.2 Reduce stage

A MapReduce job typically has fewer reduce tasks than map tasks. Typically, the
number of reducers is chosen such that the cluster can complete all tasks in one
or two waves. This is done because of the large overhead of running additional
tasks, which is caused by framework overhead for running each task, the fact that
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background shuffle and sort can only be performed for the first wave of tasks, and
the overhead of performing additional network transfers.

As a result, reduce tasks are fewer in number and often longer in duration rela-
tive to the overall length of the workload. This means that the effect of stragglers
can be much more severe.

In order to divide data amongst the reduce tasks, MapReduce partitions inter-
mediate data by key using a user-specified partitioning function (by default, the
function hash(key) is used). Depending on the nature of the data and the quality
of the partitioning function, severe data skew can occur. The intermediate data
may naturally be clustered around a few keys or even just a single key. Alter-
natively, the partitioning function may have a lot of collisions, assigning a large
number of keys to a small subset of the partitions.

If a straggler occurs in the reduce phase, some of the cluster’s resources will be
idle. There are no further tasks for this workload to schedule, and the workload
will not be finished until the last reduce task completes. The slowest task therefore
determines the overall execution time of the workload.

Many complex MapReduce applications consist of multiple MapReduce jobs,
often in a sequence where the output of one job forms the input of another. In
this situation the second job cannot start until the first job is completely finished,
because it needs all of the first job’s output files to be available in order to compute
its input splits. This situation is also shown in Figure 4.1, where the reduce task on
node A is a straggler causing node B to go unutilized until that straggler finishes.
Job 2 in the figure depends on the input data of job 1, so it cannot start until job
1 is completed.

4.3.3 Example: Parallel FP Growth

Throughout this chapter, I will use a particular application to demonstrate the
problems with workload imbalance, and to test my proposed solution in the later
sections. The application used is Parallel FP Growth [LWZ+08], a MapReduce
version of the popular FP Growth [HPY00] algorithm for frequent pattern mining.

In frequent pattern mining, the input is a database of transactions, where each
transaction consists of a set of items. The goal is to find out which items frequently
(more often than a user-specified minimum support) occur together in the same
transaction.

Figure 4.2 shows the steps of the FP Growth algorithm, which are as follows:

1. Count the number of occurrences of each item in the transaction database.

2. For each transaction, remove infrequent items (those that have fewer occur-
rences than the minimum support, which is 3 in the example in Figure 4.2)
and sort the remaining items in order of descending frequency.
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TID Items

100 F, A, C, D, G, I, M, P

200 A, B, C, F, L, M, O

300 B, F, H, J, O

400 B, C, K, S, P

500 A, F, C, E, L, P, M, N

Item Count

F 4

C 4

A 3

B 3

M 3

P 3

1 2

Item Patterns

C <{P,C}, 3>, <{M,A,F,C}, 3>, <{C}, 4>

F <{M,A,F,C}, 3>, <{F}, 4>

A <{M,A,F,C}, 3>

B <{B}, 3>

M <{M,A,F,C}, 3>

P <{P,C}, 3>

TID Ordered frequent items

100 F, C, A, M, P

200 F, C, A, B, M

300 F, B

400 C, B, P

500 F, C, A, M, P
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F:4

C:3

A:3

M:2

P:2

B:1
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C:1

B:1

P:1
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Figure 4.2: Processing workflow of the FP Growth algorithm

3. Construct an FP Tree representing the database. Each node is labeled with
an item and frequency count, except for the root of the tree which is a special
node. Starting at the root of the tree, for each item in a transaction it will
check if a child node already exists for the item, and if so it is used and
its count incremented; if not a new child node is created with a count of
1. Simultaneously, a header table is maintained linking the nodes that are
created for each item.

4. Mine the FP Tree for frequent patterns. Starting at the least frequent item
in the header table, follow the links to each node and if that node’s count
is larger than the minimum support, follow the parent of each node back to
the root to find the patterns containing that item and emit them as part of
the output. This is repeated for each item in the header table.

The output of the algorithm is a list of frequent patterns with their number of
occurrences.

The version of FP Growth used by Parallel FP Growth is a slight modification
of this algorithm. Instead of using a minimum support to filter the output, the
algorithm reports the top-k frequent patterns for each item. To facilitate this, the
patterns for each item are stored in a size-bounded priority queue.

FP Growth is not a simple algorithm to parallelize. Parallel FP Growth uses
the following approach:



4.3 Workload imbalance issues in MapReduce 39

TID Ordered frequent items

100 F, C, A, M, P

Group Group-dependent
transaction

1 F, C

2 F, C, A

3 F, C, A, M, P

Figure 4.3: Creating group-dependent transactions from a transaction

1. Use a parallel counting job to create the frequency list for the items. This is
a very straightforward operation supported by MapReduce.

2. The frequency list is divided into groups, where each group contains N items.
N has to be set small enough that the FP tree for each group is likely to fit
in to memory.

3. The transactions in the database are filtered into group-dependent trans-
actions. For each group for which there is an item in the transaction, a
group-dependent transaction is created containing those items and any more
frequent items in the group. Figure 4.3 shows how group-dependent transac-
tions are generated for a transaction using the frequency list from Figure 4.2
divided into three groups.

4. For each group, the FP Growth algorithm is performed. Note that while
the FP Tree will contain items that are not part of the group (which are
necessary because they occur as part of the patterns containing the items in
the group), mining only needs to be performed for the actual group items.
The output is the top-k list of patterns for all the items for each group (each
group produces a top-k list for all items included in the patterns, even if they
are not part of the group).

5. The resulting top-k lists from each group are aggregated to create the final
result.

Figure 4.4 shows the MapReduce job structure of the Parallel FP Growth
algorithm. The algorithm consists of four steps, using three MapReduce jobs:

Parallel counting This job scans the database, and creates the frequency list.
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Figure 4.4: MapReduce job structure for Parallel FP Growth

Input data size 11 GB
Intermediate data size 120 GB
Output data size 10 MB
Map tasks 371
Reduce tasks 64

Table 4.1: Parallel FP Growth workload properties

Grouping Divide the frequency list into groups. This is done in a single worker
and is not part of a MapReduce job.

PFP The main job of the algorithm; the map tasks generate group-dependent
transactions, using the group ID as the key for the output. The reduce tasks
perform FP Growth on the output.

Aggregating The temporary pattern lists are aggregated into the final result.

Much of the time of the overall algorithm is spent in the PFP job’s reduce
stage, which is highlighted in Figure 4.4. This stage is not only very lengthy, but
depending on the input data and configuration it can be subject to fairly large
data skew.

In order to demonstrate workload imbalance with this algorithm, I executed
it using a synthetically generated transaction database created using the IBM
Quest data generator [AS94]. The database contains 200,000,000 transactions
with 100,000 unique items and an average transaction length of 10 items. In order
to magnify the effect of the imbalance, I have altered the partitioning function for
the algorithm.

The properties of the workload are given in Table 4.1. The workload was
executed on a a 32 node cluster running Hadoop 0.20.203.0, using the hardware
setup given in Table 4.2 for each node. Although an implementation of Parallel
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CPU 2x Intel Xeon E5530 2.4GHz (8 cores)
Memory 24 GB
Disk 2x Seagate ST9500530NS (500 GB each)
Network 10 Gbps

Table 4.2: Experimental environment
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Figure 4.5: Scalability of Parallel FP Growth

FP Growth is provided in Mahout [Apac], due to issues with that implementation
I have used a custom implementation instead.

Figure 4.5 shows how this workload scales when the number of nodes in the
cluster is increased from 1 to 32. Up to 16 nodes, the workload scales relatively
well because the number of reduce tasks is larger than the number of nodes (note
however that due to the overhead per task, performance could be improved for
lower numbers of nodes by using a lower number of tasks, provided that load
imbalance would not be an issue). At 32 nodes, scalability drops of sharply, with
the application only achieving a 21.6x speed-up compared to running on one node,
rather than the desired 32x. Only a 1.4x speed-up is achieved going from 16 to 32
nodes, rather than the desired 2x.

This sub-linear scalability is almost entirely due to the data skew in the tasks.
Figure 4.6 shows the distribution of the execution times of the tasks. There is a
very large difference in the task execution times, with some tasks having almost
no work to do and finishing in as little as 13 seconds, whereas the longest task
takes 302 seconds, and it is that task that determines the execution time of the
entire job. The dotted red line indicates the execution time of the job if the data
was distributed equally amongst the task (this is estimated by using the average
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Figure 4.6: Task execution skew of Parallel FP Growth

execution time of the tasks), which is 145 seconds, a possible improvement of over
50%.

The effect of this imbalance on resource utilization can be seen in Figure 4.7,
which shows the average CPU utilization across all nodes in the cluster for the
entire Parallel FP Growth workload. The reduce tasks of the PFP job are highly
CPU intensive, therefore this is an accurate indication of overall cluster utilization
for that part of the workloads. It is clearly visible that during the PFP job’s reduce
stage, cluster utilization drops steadily as more and more tasks finish. This means
that a lot of cluster nodes are idle, waiting for the final straggler tasks to finish.

4.4 Jumbo: an experimental platform for data

intensive computing

In this section, I will introduce an experimental system for data intensive compu-
tation called Jumbo1, that was created for the purpose of experimentation with
workload imbalance issues and as a testbed for possible solutions.

The goals for the creation of Jumbo were as follows:

• To gain insight in the architecture, design, and development of a large scale
data intensive distributed system, including the design decisions used by

1Jumbo is named after a 19th century male African Bush Elephant born in the French Sudan.
Jumbo was an exceptionally large elephant made famous by the American showman P.T. Barnum,
who brought him to America for exhibition. Jumbo’s exceptional size gave rise to the word
“jumbo”, meaning large in size. See http://en.wikipedia.org/wiki/Jumbo. Hadoop was
named after a toy elephant, hence the connection.

http://en.wikipedia.org/wiki/Jumbo
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Figure 4.7: Average cluster CPU utilization of Parallel FP Growth

Hadoop.

• To perform experimentation for the purpose of determining the effects of
workload imbalance and task skew on data intensive workloads.

• To provide a flexible testbed for possible solutions that is not hindered by
Hadoop’s rigid implementation of the MapReduce model.

Jumbo consists of a distributed file system and a programming model and
execution environment for data intensive applications. Jumbo’s design was heavily
influenced by Hadoop because it was created in part to help understand the design
of Hadoop. However, in some aspects it deviates considerably.

4.4.1 Jumbo DFS

The Jumbo Distributed File System is a DFS in the spirit of the Google File
System (GFS) and the Hadoop Distributed File System (HDFS).

Jumbo DFS uses a single, centralized NameServer which maintains file system
metadata, and which offers atomic operations for clients to manipulate the file
system namespace (e.g. create or delete files and directories). File are divided into
blocks, typically 64 MB or 128 MB in size, which are stored on DataServers in
regular files, using replication to ensure fault tolerance. Blocks are further divided
into packets of 64KB, which are checksummed to ensure data integrity. A packet is
the smallest item of transfer in Jumbo: when reading or writing, you must always
transfer an entire packet. Packet checksums are stored in packet headers inside
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the block files to enable the file to be read sequentially (Hadoop stores checksums
in a separate checksum file, requiring opening two regular files to read or write a
DFS file).

Client operations

To write a file, a client communicates with the NameServer to create the file and
its first block. The NameServer decides on replica placement for the block, and
the client directly contacts the DataServer for the first replica in the list (which
is ordered based on distance from the client) and sends it the file data. That
DataServer forwards the data to the next replica.

When reading, a client requests the block list for a file from the NameServer,
and then the replica list for the block it wishes to read. It then directly contacts
the DataServer for one of those replicas to read data.

A client library abstracts these details so a client application can read and
write the files as if they were normal local files.

Replica placement

Replica placement in Jumbo uses a policy that is similar to the policy used by
Hadoop. If the writer is a node on the Jumbo cluster, the first replica is placed
on the local server; if the writer is external, a random DataServer is selected. The
second replica is placed on a different rack. The third replica is placed on the
same rack as the first (note that when writing the replication list is ordered by
distance so there is no unnecessary cross-rack communication). The remaining
replicas (if any; the default number of replicas is 3) are placed at random. When
selecting DataServers, the NameServer prefers those DataServers that have the
lowest number of blocks currently open for writing. This helps to spread writing
workload across the cluster.

Additional features

Jumbo DFS supports record aware streams. When writing a record aware stream,
the client uses an API function to inform Jumbo where the record boundaries are.
Currently, this information is used by Jumbo to ensure that a record does not
cross a block boundary; if a record straddles a block boundary, it is moved to be
entirely in the next block. This makes it much easier for clients that read only
a single block (very common for MapReduce style clients) to determine where to
start reading. This method can be extended to store record boundaries in packet
headers to allow easy location of records at arbitrary file offsets, but this is not
currently implemented. A file has to be explicitly marked to be record aware; by
default, files do not use this option.
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4.4.2 Jumbo Jet execution engine

Jumbo Jet2 is the distributed execution engine for Jumbo. It supports the creation
and execution of MapReduce style applications, but offers more flexibility to create
more complex workloads, without the complexity of Dryad’s directed acyclic graph
job structure.

Job specification

A job in Jumbo consists of a linear pipeline of stages, connected by channels. Each
stage reads input either from a channel or a file system like the Jumbo DFS (or
possibly not at all, in the case of stages that just generate data based on some
parameters), and writes data to a channel or a file system. A stage can have more
than one channel as input to enable intrinsic support for joins. Stages are divided
into tasks that each run a program on some piece of the input data. For stages that
read from a file system, the input is split in some file system dependent manner
(like Hadoop, Jumbo DFS uses blocks as the logical split boundary, optionally
dividing each block into more than one split) and for stages that read from a
channel, the data is partitioned by a user-specified partitioning function.

Tasks can perform arbitrary functions on the data. These can correspond to
map or reduce functions, but other operators are also possible. This and the ability
to chain together more than two stages gives Jumbo far more flexibility in repre-
senting complex algorithms that would have required a sequence of MapReduce
jobs in Hadoop.

Channels are responsible for data transfer between stages, and for intermediate
data handling. Jumbo supports three types of data transfer for channels (note:
the stage writing to a channel is called the sending stage while the stage reading
from the channel is the receiving stage):

File channels Data is stored in intermediate spill files on the local disk of the
sending stage, and read remotely by the receiving stage. This functions in an
identical fashion as the intermediate data shuffling functionality in Hadoop.

TCP channels Tasks in the sending and receiving stage establish a direct TCP
connection and transfer buffered data over this connection. This requires
that all the tasks in the receiving stage can be executed simultaneously, and
also disables task-level fault tolerance.

In-process channels Two tasks are connected together to form a single com-
pound task, and records are transferred via an in-memory buffer. Whereas

2Named after the nickname for the Boeing 747, an obvious connection once the base name
Jumbo was decided.
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the other channel types use an all-to-all connection between the tasks of the
sending and receiving stage, in-process channels create a one-to-one connec-
tion between two tasks. The compound task is treated as a single task during
execution.

Channels are also responsible for intermediate data handling, which controls
any additional operations performed during transfer. By default, data is simply
transferred unaltered and read by the receiving stage in the order the input seg-
ments were downloaded. This is useful for tasks that require no ordering guaran-
tees at all, or that implement their own grouping. Jumbo includes built-in support
for performing an external sort, in which case the output of the sending stage is
sorted locally, and the input segments of a task in the receiving stage are merged
before being passed to the task function. This is identical to the sorting operation
performed on intermediate data by Hadoop.

Intermediate data handling is entirely customizable. While Jumbo only offers
do nothing or external sort as built-in options, application developers can fully
customize this to their application’s needs.

Jumbo can easily mimic the behavior of Hadoop by utilizing a two stage job
with a file channel which sorts the intermediate data and groups it by key on the
receiving stage. However, it is able to utilize many alternatives that Hadoop’s
rigid implementation of the MapReduce framework does not allow. It can more
naturally support joins and operators other than map or reduce, and it can rep-
resent complex algorithms in a single pipeline of stages rather than a sequence of
separate jobs. In addition, jobs that do not require grouping or can utilize a more
efficient method of grouping than sorting are free to do so, often enabling large
gains in efficiency and also enabling tasks to perform more work with partial data,
allowing tasks to better utilize resources even when all their input data is not yet
available.

Job execution

Job execution in Jumbo Jet functions similar to Hadoop. A centralized JobServer
listens for job submission and handles scheduling of tasks. TaskServer daemons
run on each node to run tasks on behalf of the JobServer. A TaskServer checks
each running task and reports to the JobServer if one crashes or stops progressing.
If the JobServer receives such a report (or can no longer communicate with a
TaskServer at all), it will automatically re-execute the appropriate tasks.

4.4.3 Programming model

Jumbo provides a programming model that allows for the specification of task
programs and the structure of a job. One of the goals for Jumbo was that despite
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the extra flexibility, programming a distributed processing application for Jumbo
should not be considerably more difficult than writing one for Hadoop. The only
piece of unavoidable complexity associated with Jumbo is knowing when to use
that flexibility to customize your job, and when to stick to safe defaults. Jumbo
provides some heuristics to automatically use e.g. improved grouping methods for
common operations where they are known to be beneficial. This could likely be
expanded on, but because this was not a significant target of this research this has
not been explored further.

In this section, I will describe Jumbo’s programming model with the intent
that it should clarify the way Jumbo operates compared to Hadoop, and provide
an insight into how the workloads used in later experiments are implemented on
Jumbo.

Jumbo runs on Mono [Xam], an open source implementation of the Microsoft
.Net Framework, and is written in C#. Writing distributed applications for Jumbo
is therefore possible in any .Net language that is compatible with Mono, including
C#, Visual Basic .Net, F#, IronPython, and others. All examples in this section
use C#.

Tasks

The most important elements of any Jumbo job are the task programs that contain
the core data processing functionality of the job. Unlike in MapReduce, Jumbo
does not have distinct types of tasks; instead, all tasks are built using a common
ITask interface, which is given below:

public interface ITask<TInput, TOutput>

{

void Run(RecordReader<TInput> input, RecordWriter<TOutput> output);

}

A task program is simply a class that implements this interface. The TInput

and TOutput generic parameters determine the input and output types (unlike in
Hadoop, these don’t have to be key/value pairs; any record type supported by
Jumbo’s lightweight binary serialization protocol is allowed). The Run method is
provided with a RecordReader from which it reads the input, and a RecordWriter

to which to write the output (these are abstract classes that will be instantiated
with concrete types depending on the input and output).

For example, the class below implements the map class for the WordCount
sample from Section 3.3.1:

class WordCountMapper

: ITask<Utf8String, Pair<Utf8String, int>>



4.4 Jumbo: an experimental platform for data intensive computing 48

{

public void Run(RecordReader<Utf8String> input,

RecordWriter<Pair<Utf8String, int>> output)

{

foreach( Utf8String record in input.EnumerateRecords() )

{

string[] words = record.ToString().Split(" ");

foreach( string word in words )

{

output.WriteRecord(Pair.MakePair(new Utf8String(word), 1));

}

}

}

}

For the sake of simplicity, certain common optimizations (such as reusing the
object instance for the output record) were omitted from this sample.

At its base, every task program implements ITask. However, many more
functionality can be optionally added. For example, a task class can imple-
ment IConfigurable to get access to the Jumbo configuration for the task, or
IHasAdditionalProgress to report more detailed progress information. A task
can utilize attributes to express for example that the input records can reuse the
same object instance every time (something which Hadoop always does, but which
due to Jumbo’s looser semantics may not always be safe).

A number of abstract utility classes exist that implement ITask which other
classes can derive from to gain some common functionality. Foremost among these
is the PushTask class, which utilizes a push model for the input records rather than
the pull model used by ITask. PushTask defines a method that processes a single
record, much like a map function, for derived classes to implement. There are
some places in Jumbo (such as tasks that receive data from an in-process channel)
where tasks implementing PushTask offer some performance benefits over other
types of tasks.

One of the utility classes is ReduceTask, which provides record grouping by
key. It takes three generic parameters: the type of the input keys, the type of the
input values, and the type of the output records. The following class implements
the reduce function for the WordCount sample:

class WordCountReducer

: ReduceTask<Utf8String, int, Pair<Utf8String, int>>

{

public void Reduce(Utf8String key, IEnumerable<int> values,

RecordWriter<Pair<Utf8String, int> output)
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{

output.WriteRecord(Pair.MakePair(key, values.Sum()));

}

}

Job specification

A job in Jumbo is a sequence of stages. Specifying a job means specifying the
configuration of each of the stages, including their input and output (which may
be a channel to another stage or an file on the Jumbo DFS) and which class
implements their task program. Also included is the configuration of the channels,
which specifies things like the channel type, partitioning function, the number of
partitions, and any special handling that needs to be performed on the intermediate
data (like sorting).

Job configuration is specified using an XML file, and it is possible to write
such a file by hand and submit the job that way, but this is not recommended. A
second way to do it is to use the JobConfiguration class, which represents the
configuration as an object structure with a one-to-one correspondence to the XML
file. This class is used internally by Jumbo to read and write job configuration
files, and can be used by the user to construct a job.

However, the recommended way to create a job configuration is to use the
JobBuilder class. This class provides a procedural language that describes the
job as a sequence of operations that will be translated into a job configuration.
It is in some ways comparable to Pig Latin for Hadoop, except that it is done
with method calls rather than a custom language. The JobBuilder class includes
method calls for common operations that automatically create the appropriate
structure for those operations. A single operation may involve multiple stages.
For example, when using an aggregation operation the JobBuilder will create a
stage connected via an in-process channel for local aggregation as well as another
stage connected via a file channel for global aggregation.

The JobBuilder uses heuristics to determine things like the number of input
splits or the number of partitions to use. If desired these can be overridden by the
user.

For example, the following code defines the MapReduce version of WordCount
in Jumbo, using the map and reduce classes defined earlier:

public void BuildJob(JobBuilder job)

{

var input = job.Read("input.txt", typeof(LineRecordReader));

var mapped = job.Process(input, typeof(WordCountMapper));

var sorted = job.SpillSort(mapped, typeof(WordCountReducer));

var reduced = job.Process(sorted, typeof(WordCountReducer));
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job.Write(reduced, "output", typeof(TextRecordWriter<>));

}

The Process function is used whenever you already have a task class for the
operation you want to perform. The SpillSort function sorts the intermediate
data using an external sort implementation similar to how Hadoop implements
intermediate data sorting, optionally applying a combiner function. This auto-
matically sets up the channel to sort the data on the map side, and merge it on
the reduce side.

The end result of this sample is a version of WordCount that operates exactly
like it would in Hadoop, and does not use any of the special features of Jumbo.

The JobBuilder contains two more major features to ease creation of jobs: it
can accept methods, rather than classes, for the task programs, and it contains
many utility methods for common types of operations, often with an accompanying
custom method signature that the user should implement for this operation. Using
these features, it is possible to define an alternative version of WordCount as follows
(some concrete types have been omitted from this sample for readability):

public static void MapWords(Utf8String record,

RecordWriter<Pair<Utf8String, int>> output)

{

output.WriteRecords(

record.ToString()

.Split(" ")

.Select(w => Pair.MakePair(new Utf8String(w, 1)))

);

}

public static int AggregateCounts(Utf8String key,

int oldValue, int newValue)

{

return oldValue + newValue;

}

public void BuildJob(JobBuilder job)

{

var input = job.Read("input.txt", typeof(LineRecordReader));

var mapped = job.Map(input, MapWords);

var reduced = job.GroupAggregate(mapped, AggregateCounts);

job.Write(reduced, "output", typeof(TextRecordWriter<>));

}

The Map function automatically generates a task class based on the map func-
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Figure 4.8: WordCount job structure in Jumbo

tion specified. This alleviates the user from the burden of writing the same plumb-
ing for many tasks that can be trivially expressed in a single function.

The GroupAggregate function will aggregate the values for each key using
a hash-table, which for WordCount is far more efficient than the sorting based
grouping of regular MapReduce. It generates a task class to perform that hash-
table based aggregation, requiring the user to only provide a function that performs
the aggregation function given the old value stored in the hash-table and a new
value from a record that was read from the input. In this case, that function is a
simple sum of the values.

The job structure of this version of WordCount is shown in Figure 4.8. It
consists of two main stages, the first of which uses a compound task consisting of
a map task and an aggregation task connected using an in-process channel. That
stage is connected via a file channel to a global aggregation stage. This figure uses
three input splits and two partitions as an example; obviously those values will
differ depending on the input data and system configuration.

Because the JobBuilder uses delegates to let the user specify which method
to generate the class from, it is even possible to use lambda’s in place of full-blown
methods, further simplifying the job creation process.

Advanced features

Jumbo has many more ways to customize a job. A user can create classes derived
from RecordReader and RecordWriter to implement custom input formats. You
can also create special RecordReader classes that are responsible for combining
input from multiple sources, either for a task that needs to merge the input seg-
ments of the previous stage or for a stage that receives inputs from multiple stages.
Although a number of such classes are built in to support for example merge sort
for intermediate data or inner-loop joins, this is fully customizable to allow any
kind of data handling the user wishes for the job.
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An in-depth explanation of these and other advanced features is beyond the
scope of this thesis.

4.5 Dynamic Partition Assignment

As discussed in Section 4.3.2, the reduce stage of MapReduce jobs is particularly
sensitive to data skew. Although it is possible to use sampling of the map output
to adjust the partitions, this must be done before the job and can only help to
mitigate data skew, not processing skew or performance heterogeneity.

In Section 4.3.1, it was mentioned that one of the mitigating factors for strag-
glers in the map phase was that the large number of map tasks means that they
are individually relatively short, reducing the relative impact stragglers have on
the entire workload. While increasing the number of reduce tasks could have a
similar effect, there are several reasons why this is not a desirable solution:

• Hadoop has a considerable overhead associated with the scheduling and ex-
ecution of additional tasks. This includes overhead of starting the Java
Virtual Machine, loading job configuration, and other start-up operations.
For reduce tasks, the scheduling overhead is larger because Hadoop never
schedules more than one reduce task for a Tasktracker on a single heartbeat.
Additionally, the implementation of the shuffle phase also adds additional
overhead that does not exist for map tasks. My experiments have shown
that the overhead of increasing the number of tasks can be in excess of five
seconds per task.

• More reduce tasks means they will be executed in more waves. Only the first
wave can be started in the background while some map tasks of the same job
may still be running, so adding additional waves reduces the amount of work
that can be done on the reduce stage while waiting for map task stragglers.

• Every reduce task reads an input segment from every map task. The total
number of transfers performed is therefore M ∗R with M map tasks and R
reduce tasks. Each of these transfers potentially causes a disk seek operation,
and with increasing numbers of transfers the relative size of the data read
for each disk seek becomes smaller. For large numbers of tasks, the effect of
this can be significant. Hadoop also does not use persistent connections to
the Tasktrackers for shuffling, adding network overhead to each transfer.

While the first issue is largely an implementation issue and indeed does not
affect my Jumbo framework nearly as much as Hadoop, the other two issues are
fundamental and cannot be circumvented without a radical change in shuffling
architecture.
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Figure 4.9: Dynamic Partition Assignment in operation

What is needed therefore is a method to increase the granularity of workload
distribution to achieve the same balancing effect of having more tasks, but with-
out the added overhead of creating more tasks and performing more and smaller
transfers. I propose a method for workload balancing called Dynamic Partition
Assignment that is able to meet this goal.

The core principle of Dynamic Partition Assignment is to decouple the notions
of partitions and tasks. In traditional MapReduce, each task processes exactly
one partition. With Dynamic Partition Assignment, there are more partitions
than tasks, so each task processes more than one partition and partitions can be
dynamically reassigned to different tasks when imbalance is detected.

4.5.1 Dynamic Partition Assignment algorithm

Dynamic Partition Assignment works by having a pool of unassigned partitions
from which tasks select partitions. Tasks are assigned partitions from the pool, or
when the pool is depleted they can be assigned partitions from other tasks.

The algorithm uses the following steps, which are illustrated by Figure 4.9,
which gives an example using a hypothetical job with 10 partitions and 2 reduce
workers.

1. When the job is created, a user-specified percentage of the total number of
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partitions is distributed evenly across the workers. In Figure 4.9a, this per-
centage was set at 80%, so each of the two workers is assigned four partitions
to process, with two partitions remaining in the unassigned partition pool.

2. Each worker shuffles the data for all their assigned partitions. Data for
sequentially numbered partitions is stored sequentially in the map task’s spill
files, so a single network transfer and disk seek can transfer all partitions in
the initial assignment. A worker may also perform background merges on
already shuffled partitions even if processing those partitions has not yet
started.

3. Each worker starts processing their partitions one by one. Before a worker
starts processing a partition, it checks that this partition is still assigned to
it; in the case of a reassigned partition, it is skipped.

4. When a worker finishes processing all its assigned partitions, it requests
assignment of additional partitions. If there are still partitions in the unas-
signed partition pool, it is assigned one of those partitions. This is illustrated
in Figure 4.9b and c, where worker A finishes processing before worker B so it
is assigned the two remaining partitions from the unassigned partition pool.
The reason why worker A finished processing so much sooner than worker
B is not important to the algorithm; it could be data skew, processing skew
or hardware heterogeneity, but the handling is the same. Imbalance is de-
tected simply by observing when some tasks finish sooner than others, and
additional work is assigned to those tasks.

5. When a worker finishes processing and the unassigned partition pool is
empty, a partition is reassigned from the worker with the most remaining
unprocessed partitions. In Figure 4.9d, worker A exhausts the unassigned
partition pool before worker B is finished, and since worker B has not yet
started processing partition 8 it is reassigned to worker A.

6. When a worker finishes processing and no partitions can be reassigned, the
worker finishes. When all workers finish, the job is finished. This is shown
in Figure 4.9e.

The primary advantage of this approach compared to using more reduce tasks
is that the transfer of the initially assigned partitions happens as a single sequential
read and a single network transfer. This means that the average size of each read
can be kept fairly large, minimizing the overhead of disk seeks. The larger the
initial partition assignment percentage, the larger those initial reads will be and
the fewer partitions have to be read one by one.
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If a partition is reassigned from a task A to another task B, that partition is
shuffled twice. Task A had already transferred all the data belonging to the parti-
tion, and may even already have performed background merges for that partition.
However, when the partition is reassigned, task A will not process that partition so
the data is discarded and any work done on shuffling and/or sorting that partition
is not used. Task B will shuffle and sort the data for the partition on its own (the
data is shuffled from the original sources of the data, not from task A, to avoid
putting additional load on the node that is running task A in the case that task
A’s slowness was already caused by overloading of the node it was running on).

The initial partition assignment percentage therefore represents a trade-off be-
tween having larger initial transfers and having potentially more duplicate trans-
fers. If you expect the tasks to be reasonably well balanced, a high percentage will
enable efficient transfers with only a very small overhead compared to running in
a default MapReduce configuration with a normal number of reduce tasks each
processing a single partition.

Dynamic Partition Assignment can mitigate the effects of imbalance from data
skew, processing skew or performance heterogeneity without any a priori knowledge
about the hardware or data. The only requirement is that the data can in fact
be split into smaller partitions. If there are any very large keys responsible for
the skew, these cannot be split into smaller pieces so increasing the number of
partitions does not offer any benefit in that scenario.

4.5.2 Implementation

I implemented Dynamic Partition Assignment on the Jumbo distributed processing
system described in Section 4.4. I chose Jumbo as the test platform because its
more flexible design mad it easier to implement Dynamic Partition Assignment,
and it has reduced overhead allowing the benefit of Dynamic Partition Partition
Assignment to be more clearly observed. Jumbo does not have an explicit notion
of reduce tasks, so DPA can be applied to any channel regardless of whether the
receiving stage performs a reduce or another type of operation.

During job construction, the user specifies the number of partitions and the
number of receiving tasks for a channel. If the number of partitions is larger than
the number of tasks, Dynamic Partition Assignment is enabled. The user also
specifies the initial partition assignment percentage (if not specified for a job, the
value from the system configuration is used).

The JobServer takes the role of partition manager. When a job is created, it
creates a pool of partitions, takes the specified percentage of partitions from that
pool and assigns them evenly among the tasks.

When a task starts running, it queries the JobServer for its assigned partitions
and begins shuffling and sorting those partitions. Before actual processing of each



4.5 Dynamic Partition Assignment 56

partition begins, it contacts the JobServer again to verify the partition has not
been reassigned. If not, the task starts processing the partition. The JobServer
also marks the partition as currently being processed so it cannot be reassigned
(only partitions that are not being processed can be reassigned to another task).
If a task is informed that a partition is reassigned, it simply discards all the data
for that partition and skips to the next partition.

When a task finishes processing all its assigned partitions, it contacts the Job-
Server to request additional partition assignments. The JobServer assigns an ad-
ditional partition from the unassigned pool or, if the pool is empty, searches the
list of already assigned partitions for a partition to reassign. It will select the
last partition of the task that has the most remaining unprocessed partitions. If
multiple tasks have the same number of unprocessed partitions, one is selected at
random.

Only a single new partition is assigned to a task at a time in the current imple-
mentation. When this partition is assigned to a task, it is immediately marked as
being processed (even though the task still needs to shuffle it) to avoid partitions
being reassigned back and forth between tasks.

If a task does not receive a new partition assignment, it finishes as usual.
In a normal MapReduce job, each task generates a single output file. In the

case of a Jumbo task writing to the DFS, a file is created for each partition. If the
task is writing to a channel, no distinction is made between the partitions as the
channel re-partitions the records anyway.

Jumbo will create a new instance of the task class for each partition, so seman-
tically it operates in the same way as having multiple tasks for each partition. A
task class can use an attribute to indicate it’s capable of handling all partitions
in a single instance, allowing certain advanced optimizations such as sharing data
structures between partitions.

4.5.3 Refinements

A number of refinements are possible for Dynamic Partition Assignment. These
are not currently implemented and are left for future work.

• Use of output statistics: the JobServer could keep track of the size of each
partition as each map task finishes. This information could be used to choose
which partitions to reassign to minimize duplicated work.

• Bulk assignment of partitions: if a task finishes sufficiently ahead of other
tasks, it may be preferable to assign multiple partitions to it at once, to retain
the advantage of larger transfers for the dynamically assigned partitions. In
combination with statistics gathered about partition size, this could be used
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to combine multiple small partitions. Note that this is only beneficial for
consecutively numbered partitions because otherwise they are not stored
sequentially so cannot be transferred together without disk seeks.

• Ahead-of-time partition assignment: currently, a task can only request new
partitions once it finishes. If additional processing capacity is available,
it may be preferable to start shuffling and merging a new partition before
the current one has fully finished processing. Determining when this would
be beneficial and when it would cause additional interference would be a
complex problem, however.

• Speculative execution of partitions: like the regular speculative execution of
tasks, if a task is taking a long time to process a particular partition but
there are no remaining partitions to reassign, other tasks could speculatively
execute the same partition to see if they can process that partition faster.

• Guided initial partition assignment: in the case that information about data
skew or hardware heterogeneity is available, the initial partition assignment
could be altered to account for these known factors. For example, it could
assign fewer initial partitions to tasks running on nodes with less powerful
hardware specifications or utilize knowledge about relative partition sizes to
assign partitions according to a bin packing algorithm.

4.6 Experimental evaluation

Dynamic Partition Assignment was evaluated using the Parallel FP Growth work-
load from Section 4.3.3. The experiment was performed on a 32 node cluster
running Jumbo where each node has the hardware given in Table 4.2.

4.6.1 Workload

I used the Parallel FP Growth workload with as input data a randomly gener-
ated database [AS94] with 200,000,000 transactions, 100,000 unique items and an
average of 10 items per transaction. The workload has the properties given in
Table 4.1.

I implemented Parallel FP Growth workload for Jumbo, porting the custom
implementation previously used for Hadoop in Section 4.3.3. The algorithm and
implementation are identical, so any performance differences between Hadoop and
Jumbo are purely due to efficiency improvements available in Jumbo.
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Figure 4.10: Parallel FP Growth job structure in Jumbo; DPA is applied to the
highlighted channel

The structure of the Parallel FP Growth job in Jumbo is given in Figure 4.10;
compare this to the Hadoop structure given in Figure 4.4. The Jumbo version uses
a single job with six stages.

Count Read the transaction database from the DFS and uses a compound task
that extracts items from the database and locally aggregates the number of
occurrences of each item using hash-table based grouping. This allows for far
more efficient grouping than the sorting-based grouping required by Hadoop.
The output channel of this stage does not perform any special handling of
the intermediate data (no sorting is used).

Sum Aggregates the global counts of all the item in the database using a hash-
table. The output channel does not perform special handling of the interme-
diate data.

Group A single task (no parallelization) sorts the frequency list and divides it
into the specified number of groups. The result is written to the DFS.

Gen Equivalent to the map stage of the PFP job in the MapReduce version.
Reads the transaction database and grouped frequency list from the DFS,
and generates group-dependent transactions. The number of partitions on
the output channel is set to equal the number of groups, so each group-
dependent transaction’s partition is equal to their group number. This elim-
inates the need for any further grouping or sorting, so the output channel
does not need to do any special handling of the intermediate data.

FP Equivalent to the reduce stage of the PFP job in the MapReduce version.
Performs the FP Growth algorithm on each group. The output is a key/value
pair with the item as the key and the item’s top-k transactions as the value.
The output channel does not do any special handling of the intermediate
data, as grouping is handled by the next stage.
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Figure 4.11: Average cluster CPU utilization of Parallel FP Growth with and
without DPA

Aggregation Aggregates the frequent patterns for each item. The output is
written to the DFS.

Note that for each of the stages, it was possible to use a more efficient grouping
method other than sorting. No sorting of the intermediate data is done at any
point in the job, leading to a considerable improvement of efficiency over the plain
MapReduce version. Additionally, the map stage of the MapReduce aggregation
job was removed entirely, because it served only to repartition the temporary
result. Because the FP stage writes directly to a channel and not the DFS, it is
already capable of doing this repartitioning without needing an extra stage. These
changes reduce the overall execution time of the job, and therefore increase the
relative effect of stragglers making the benefit of Dynamic Partition Assignment
more clear.

The FP stage is the equivalent of the reduce stage of the PFP job in the
MapReduce version of the algorithm, and since I use the same input data and job
configuration it is subject to the same amounts of data skew. Dynamic Partition
Assignment is enabled on the channel between the Gen and FP stages to mitigate
the skew.

4.6.2 Results

I compared the result of running the workload using 32 nodes with Dynamic Par-
tition Assignment enabled and disabled. I used 7680 groups and therefore also
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(a) DPA disabled.
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(b) DPA enabled.

Figure 4.12: Execution time of each task of the FP stage with DPA enabled and
disabled, where the red line shows the optimal execution time

7680 partitions, and 90% initial partition assignment. This is compared against
an execution where Dynamic Partition Assignment is disabled: in this case, initial
partition assignment is 100% and reassignment is not allowed.

Figure 4.11 shows the average cluster CPU utilization across all nodes. As
before, since the FP stage is largely CPU bound (particularly during the actual
processing of the FP Growth algorithm) this is an accurate measure of overall
cluster utilization during this part of the job. The line where DPA is disabled shows
a similar profile to the MapReduce result of Figure 4.7, with cluster utilization
dropping as more tasks finish processing. Because the improved efficiency of Jumbo
has drastically reduced the execution time for the feature counting, generating
group-dependent transactions, and aggregation steps, the relative length of the
FP stage is longer and the relative impact of the under-utilization appears larger.

With Dynamic Partition Assignment enabled, cluster utilization remains at
100% for nearly the entire FP stage, and all tasks finish nearly simultaneously
(the final CPU spike is the aggregation stage). The execution time of the FP
stage was reduced by 50% from 460 seconds to 230 seconds, and the execution
time of the overall workload was reduced by 36% from 608 seconds to 391 seconds.
Additionally, Jumbo is 22% faster than Hadoop when DPA is not used, and 50%
faster than Hadoop when DPA is enabled (note that this difference is somewhat
smaller than it could be because the FP Growth algorithm itself runs somewhat
slower under Mono than the equivalent Java version).

Figure 4.12 shows the individual execution time of each task with Dynamic
Partition Assignment disabled and enabled. When Dynamic Partition Assign-
ment is not used, Jumbo shows a similar distribution of task times as Hadoop in
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Figure 4.13: Comparison of Dynamic Partition Assignment versus increasing the
number of tasks

Figure 4.6. The dotted red line indicates the optimal execution time, derived by
taking the average execution time of each task in Figure 4.12a.

It can be seen from Figure 4.12b that with Dynamic Partition Assignment
enabled, the actual execution time of 230 seconds closely approximates the optimal
execution time of 212 seconds. The difference is due to the overhead of duplicate
transfers, individually transferring the dynamically assigned partitions, and some
minor implementation overhead for Dynamic Partition Assignment.

It is clear that Dynamic Partition Assignment can greatly reduce the effects of
data skew on a workload, with only minimal overhead. The execution time of the
affected stage in this example was halved by the use of DPA, significantly improving
the overall execution time of the workload. The cluster was fully utilized for almost
the entire workload, which effectively means that very few resources were wasted,
enabling a nearly optimal utilization; further improvements are only really possible
by increasing the workload’s efficiency, not by improving its resource utilization.

DPA compared to increased task numbers

The alternative option for increasing load balancing granularity is to increase the
number of reduce tasks. To test how Dynamic Partition Assignment compares to
this approach, I executed the Parallel FP Growth workload using 128, 256, 512,
768, and 7680 tasks in the FP stage (Jumbo) or PFP reduce stage (Hadoop).
Figure 4.13 shows the execution time of the entire Parallel FP Growth workload
(including all jobs and stages) using these different settings, comparing the result
to the original 64 task workload with imbalance and when using Dynamic Partition
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Assignment.
The results of using 128, 256, 512 or 768 tasks for Jumbo are all very close

together, and also quite close to using Dynamic Partition Assignment; they are
between 10 and 20% slower than using DPA, with 128 tasks being the slowest and
768 tasks the fastest (note that these percentages relate to the entire workload, not
just the affected stage). It appears that increasing the number of tasks in this case
is mostly successful in reducing the imbalance and eliminating stragglers. With
128 tasks there is still some imbalance, and increasing to 768 tasks the balance
improvements still outweigh the reduced efficiency due to per-task overhead. Note
that 256, 512 and 768 tasks are within 1% of each other, so it unlikely that much
more improvement can be gained form further increases.

For Hadoop, the overhead of increasing the number of tasks is large enough
that even just using 128 tasks is 10% slower than the original imbalanced version
with 64 tasks. For 256 and 512 tasks, the per-task overhead dominates, further
slowing the job down. At 768 tasks Hadoop seems to hit a sweet spot between
improved balance and task overhead, improving performance somewhat, although
even that setting is still 6% slower than using 64 tasks. Part of the overhead is
also caused by the fact that, due to the multi-job structure of Parallel FP Growth
in Hadoop, increasing the number of reduce tasks for the second job also increases
the number of map tasks in the third job. Despite seemingly reducing imbalance
compared to the original case, increasing the number of tasks actually reduces the
efficiency of the job.

Since I used 7680 partitions for Dynamic Partitions Assignment, to really get
the same level of load balancing granularity that Dynamic Partition Assignment
provides it is necessary to also use 7680 tasks. In this case, the overhead per task
means that both Jumbo and Hadoop are slower than their original imbalanced
executions with 64 tasks. Hadoop is particularly bad in this case with a 227%
increase in execution time compared to 16% for Jumbo. Jumbo with 7680 tasks is
83% slower than using Dynamic Partition Assignment.

The reason that for this workload, at least for Jumbo, a small increase in the
number of tasks appears quite effective in reducing imbalance is largely due to
the structure of the workload. Both Jumbo and Hadoop schedule reduce tasks
in numerical order, and Figure 4.12a shows that the tasks in this workload are
roughly ordered from longest to shortest which makes it much easier to balance
when the number of tasks is increased. This is indeed observed during execution;
the nodes that run the shorter tasks from the first wave are able to complete most
or all of the really short tasks before the really long ones from the first wave finish.

In general, it is not always possible to order tasks this way. That it happens here
is a coincidence, a natural consequence of the relation between the item frequency
in a group and the length of the transactions in a group (while higher-numbered
groups have longer transactions due to the way group-dependent transactions are
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generated, they have far fewer of them). For other workloads that may not have
this property by themselves, ordering the tasks this way would require knowing
the relative sizes of the partitions. This can only be determined by sampling the
intermediate data using an additional execution of the job. Even then, this only
addresses the problem for data skew, not processing skew or hardware heterogene-
ity.

Even for a workload like this, where tasks are ordered such that only a small
increase in the number of tasks can gain large improvements in balance, there is
still a key advantage to using Dynamic Partition Assignment: it can be enabled
even if the user doesn’t know if it will be necessary, without worrying about too
much additional overhead. The number of reduce tasks is something that must
be configured by the user or system administrator, and the rule of thumb says
you should have at most one or two waves. Especially for Hadoop, where the
overhead of increasing the number of tasks is much larger than for Jumbo, this
rule is important. Unless the user already knows that the workload is going to
be imbalanced, there is no reason to increase the number of tasks because the
expectation is that this decreases performance. Even if the user does know, it
would require careful experimentation to determine the optimal number of tasks.
By contrast, with Dynamic Partition Assignment a very large number of partitions
can be used without significant overhead. This means the user can enable Dynamic
Partition Assignment knowing that if there is imbalance it can be reduced, but
that if there is no imbalance, no harm will be done. It removes the need for
the user to decide whether the trade-off between overhead and potential balance
improvements is worth it.

4.6.3 Performance heterogeneity

The previous section demonstrates how Dynamic Partition Assignment can miti-
gate the effects of data skew and processing skew. I also evaluated its ability to
address the effects of performance heterogeneity.

For this purpose, I used a 48 node cluster using the node types described
in Table 4.3, with 32 nodes of type A and 16 nodes of type B. The workload
used a transaction database of 800,000,000 items with the properties shown in
Table 4.4, and was configured to not have the same kind of data skew as the
previous experiment. Every node runs at most two simultaneous tasks (including
the type B nodes) to avoid excess I/O interference. This means that of the 192
reduce tasks, 64 were executed on the type B nodes and the remaining 128 on the
type A nodes.

The execution times of each task of this workload with DPA enabled and
disabled are shown in Figure 4.14. The variance in the task times is far less in
Figure 4.14a than in Figure 4.12a because there is no data skew and the practical
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Node type A
CPU 1x Intel Core 2 Duo E6400 2.13GHz (2 cores)
Memory 4 GB
Disk 1x 1 TB

Node type B
CPU 2x Intel Xeon E5410 2.33GHz (8 cores)
Memory 32 GB
Disk 2x 1 TB

Table 4.3: Experimental environment for performance heterogeneity

Input data size 44 GB
Intermediate data size 240 GB
Output data size 10 MB
Map tasks 1484
Reduce tasks 192

Table 4.4: Parallel FP Growth workload properties for performance heterogeneity
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(a) DPA disabled.
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Figure 4.14: Execution time on the heterogeneous environment of each task of the
FP stage with DPA enabled and disabled, where the red line shows the optimal
execution time
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difference in performance between the nodes is not that big for this workload.
The FP stage is mostly CPU bound and since each task effectively uses one CPU
core, the most relevant metric here is the difference in speed between each core of
node types A and B, which is not that big. Nevertheless, there are clear stragglers
holding up the entire workload, with a total execution time for the FP stage of
814 seconds, where optimally it would have been 668 seconds if all tasks had equal
execution times.

Figure 4.14b shows that enabling Dynamic Partition Assignment is able to
reduce the variance in task times, and improve the execution time of the FP stage
by 14% to 707 seconds, which is within 6% of the optimal execution time.

This demonstrates that Dynamic Partition Assignment is also able to miti-
gate the effects of performance heterogeneity, something which sampling-based
approaches to reducing data skew are not able to do. The benefit of Dynamic
Partition Assignment would be bigger if the performance difference between the
nodes was bigger, but unfortunately this was the only heterogeneous environment
available to me at the time of this experiment.

4.7 Conclusion

In this chapter, I have shown how data skew, processing skew and performance
heterogeneity can cause stragglers in MapReduce, and how this can hinder resource
utilization on large clusters. The design of MapReduce means that a straggler in
the map stage will prevent the reduce stage from progressing, and a straggler in
the reduce stage will delay completion of the workload, and prevent subsequent
jobs that depend on the output of that job from starting. Stragglers in the reduce
stage are particularly common due to the low number and relatively long length
of tasks, and the reliance on a user-specified partitioning function to divide work
amongst tasks.

While a job is stuck waiting for stragglers, many of the resources of the cluster
are not fully utilized and do not contribute to the progress of the job. Stragglers
therefore prevent a workload from scaling linearly when additional resources are
added to the cluster, because not all of the new resources can be fully utilized for
the entire duration of the workload. In the cloud, where billing it typically based
on the amount of time a resource is held by a user, this translates to additional
costs for no extra benefit. The resources, although not fully utilized, can typically
not be released because they can still be partially utilized or contain data that the
rest of the workload requires to progress.

While running multiple workloads—possibly from multiple users—on one Map-
Reduce cluster may help to utilize the spare resources, stragglers can still pose a
problem if performance guarantees or QoS contracts need to be met for certain
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jobs.
I proposed Dynamic Partition Assignment, a method that is able to alleviate

the problem of stragglers in the reduce phase by increasing the number of par-
titions, and thus the load balancing granularity. By decoupling partitions from
tasks and using a combination of large initial partition assignments that can be
transferred using a single sequential read, additional partition assignments from
a pool of unassigned partitions, and partition reassignment from stragglers to al-
ready finished tasks, Dynamic Partition Assignment is able to achieve this extra
granularity without the overhead of increasing the number of reduce tasks.

Dynamic Partition Assignment was implemented on Jumbo, my experimental
platform for data intensive computing, and tested using Parallel FP Growth as an
example workload, both by introducing deliberate data skew and by testing using
a heterogeneous cluster environment. In both cases, Dynamic Partition Assign-
ment was able to reduce the variance in the task execution times and eliminate
stragglers, improving performance by as much as 40% and bringing the affected
stage’s execution time to within 10% of the optimal execution time.

Unlike approaches that rely on sampling or gathering of statistics, Dynamic
Partition Assignment is a no-knowledge load balancing approach that can respond
to unexpected causes of task skew, including sudden performance degradation of
some nodes, for instance due to background tasks or interference from other virtual
machines sharing the same physical host.

Although Dynamic Partition Assignment was demonstrated on a MapReduce
style system and workload, the issue of stragglers is a common one in many cloud
applications. In any such application that relies on data partitioning, Dynamic
Partition Assignment can be utilized to reduce the number of stragglers. The only
requirement is that the data can be split into sufficiently small partitions to achieve
the necessary granularity in balancing the workload. Extending this approach to
handle very large single keys is left for future work.



Chapter 5

I/O interference in data intensive
distributed processing

5.1 Introduction

In Chapter 4, I covered three major factors that can lead to inefficient resource
utilization: data skew, processing skew, and performance heterogeneity. There is
however another, altogether more complex, factor that can have a major impact on
performance and resource utilization. This factor is interference between processes.

Interference occurs whenever two or more processes are attempting to access the
same limited resource. Such a resource may be a local resource under contention
from multiple processes on the same system, or a global resource under contention
from processes running on different systems in the cluster. Processes may be
tasks from the same workload, different workloads running in the same instances,
or there can even be interference between virtual machines running on the same
physical host.

Modern server nodes typically have many CPU cores, so it is desirable to use
increased levels of parallelism on each node to be able to utilize the full CPU
power of the node. However, data intensive applications such as those running in
MapReduce or similar frameworks are often dominated by I/O operations, partic-
ularly reading and writing data from disks, and these I/O resources are usually
more limited than the CPU resources. Disk storage solutions in the cloud can
come in many forms: among other options it can be a single, traditional hard disk
with spinning platters, it can be a high-performance SSD drive, or it could be a
large storage array (e.g. RAID) attached to a node via a NAS or SAN. However,
regardless of which is the case, they are often presented to the node as a single
logical device that all processes must share.

On a system with multiple CPU cores, parallel processes (as long as the number
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Figure 5.1: Scalability of WordCount and TeraSort with per-node parallelism

of threads does not exceed the number of cores) can be thought to each operate
on a different CPU. Even though in reality they may be sharing some resources
and shifting to different cores on occasion depending on scheduler behavior, there
is only a small amount of interference at the CPU level because a dedicated set
of CPU resources is available to each process at any given time. However, with
only a single storage device I/O requests must be multiplexed between the pro-
cesses. When multiple processes access such a device, this can lead to significant
performance degradation. At best, the aggregate performance of all the parallel
processes will be the same as when a single process accessed the device, but due
to the properties of hard disks performance can often degrade even further.

Figure 5.1 shows an example of the scalability of two typical MapReduce work-
loads running on Hadoop 0.20.203.0 when the number of parallel tasks running on
each node is increased from 1 to 8. The experiment was run on a cluster with nodes
that have 8 CPU cores and 1 storage device (see Table 5.4), so when increasing
the number of tasks to 8, performance reduction due to CPU contention should
be minimal.

The first workload is WordCount, a canonical MapReduce workload taken from
the original MapReduce paper [DG04] and provided in Hadoop [Apaa] as sample
code. WordCount must parse the input to find the word boundaries, which uses
a lot of string operations. String operations in Java are known to be expensive,
particularly in a case such as this where a large number of temporary String objects
are created, putting pressure on the garbage collector. Additionally, WordCount
produces a very large number of intermediate records that must be serialized and
lexicographically sorted. It also utilizes a combiner function in the map tasks
to perform local aggregation of the counts for various words, meaning that both
the intermediate data and output data of the job is very small. As a result, this
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workload is almost entirely CPU bound. This is reflected in Figure 5.1, which
shows that WordCount is able to scale almost linearly when per-node parallelism
is increased. When running 8 tasks per node, WordCount runs 7.6x faster than
when running a single task per node, 95% efficiency compared to linear scalability,
indicating it is able to fully use the system’s 8 cores.

The second workload is a sorting operation using the data format used by the
TeraSort benchmark [Ter]. This format used fixed-size records of 100 bytes with
a 10 byte key, meaning that they can be efficiently parsed and sorted quite easily.
The map and reduce functions for this operation are no-ops, and the intermediate
data and output data is the same size as the input data (no compression is em-
ployed). This workload is therefore very I/O intensive, which is clearly visible in
Figure 5.1. It is only able to run 2.4x faster with 8 tasks per node, an efficiency
of only 29% compared to linear scalability. Furthermore, it can be observed that
peak performance was obtained running 5 nodes per task; when the number of
tasks per node is increased further, performance actually decreases.

It is very difficult to successfully mitigate I/O interference with an approach
like Dynamic Partition Assignment proposed in Chapter 4. For example, in the
Parallel FP Growth experiments I found that if a large number of tasks per node
was used sometimes the Hadoop or Jumbo scheduler would put the largest of the
PFP reduce tasks on the same node, causing very large I/O interference on that
node. When other tasks finish, Dynamic Partition Assignment would take away
work from the tasks experiencing interference, but this only means that they will
finish sooner, it does not alleviate the load of the system while those tasks are still
processing, so interference will continue to occur until those tasks run out of work.
While Dynamic Partition Assignment was able to reduce the variance between the
tasks and avoid stragglers, the nodes experiencing interference still were not able
to utilize all CPU resources and ran at less than optimally efficient processing
speeds for the entire duration of those tasks, even though there were no stragglers.

Additionally, dynamically assigning partitions has the added effect of causing
additional I/O, particularly in the case when reassigning a partition from one
task to another, in some cases exacerbating the situation. Even if it was possible
to instantaneously reduce the workload of the nodes experiencing interference,
moving work away from those nodes would cause additional I/O

These examples demonstrate how I/O interference can prevent a system from
being fully utilized. As data intensive applications are more and more pervasive
among cloud workloads, it is increasingly important to be able to address the
performance problems. My experience with Dynamic Partition Assignment shows
it is very complex to mitigate I/O interference at the point it is detected, since
moving work may cause additional I/O. It is therefore clearly necessary to be able
to predict the effects of I/O interference before they happen.

Predicting I/O interference is a very complex problem. The behavior of hard
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disks in particular is very complex due to their mechanical nature, but there are
a number of other factors that affect the performance under interference:

• A large number of components are involved in determining how concur-
rent I/O operations interact, including the kernel I/O scheduler, read-ahead
buffers, and any further scheduling or buffering done by the underlying hard-
ware. In addition, the kernel CPU scheduler and the I/O scheduler can have
complex interactions.

• A process’s I/O usage may not be uniform over its entire execution. When
two processes overlap, even if those processes perform identical or similar
work, they may not be performing the same I/O operations at the same
time.

• Environmental factors such as file system fragmentation can affect perfor-
mance and I/O interference. Not only does reading a fragmented file affect
performance, but concurrently writing multiple files often causes additional
fragmentation on many common file systems.

In this chapter, I analyze the I/O behavior of MapReduce in detail and propose
an I/O cost model that combines the application behavior with hardware models
derived from micro-benchmarks to predict the effect of I/O interference. This
model is evaluated with several representative workloads on a real cluster, and the
results show it is able to make predictions with very high accuracy.

5.2 Related Work

The difficulty of efficiently using MapReduce has been recognized for some time.
There have been a number of works that attempt to automatically optimize Map-
Reduce execution [KPP09, WLMO11, JCR11, WOSB11, HDB11, JQRD11], typi-
cally focusing on optimizing query execution and sharing work between workloads,
or automating cluster provisioning and Hadoop configuration. Other works focus
on optimizing the I/O efficiency of MapReduce [RLC+12, RRS+12]. In these
works, I/O is only considered when the goal is to reduce the total amount of I/O
performed by the application or optimize the I/O patterns employed by MapRe-
duce; the impact of I/O interference on existing MapReduce applications is not
considered.

5.2.1 MapReduce modeling

Recently, there has been an increasing amount of work in modeling the behavior of
MapReduce. Huai et al. [HLZ+11] propose a model that generalizes MapReduce
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and similar frameworks into a matrix-based representation of the data flow. Verma
et al. [VCC11a] propose a model to estimate job completion time based on the
observed task completion times measured previously. Jindal et al. [JQRD11] model
the read I/O behavior of map tasks. Yang et al. [YLLQ12] propose a statistical
model to evaluate the effect of various configuration parameters.

The model proposed by Herodotou et al. [HDB11, Her10] is to my knowledge
the most complete analytical model of Hadoop, focusing on relative performance
between environments and optimizing Hadoop configuration. The data flow model
for MapReduce execution used in this work is very comprehensive, and my model
builds on this to some extent.

My work focuses on the I/O performance of MapReduce and differs from these
existing models because all of them make simplifying assumptions about I/O or
ignore it entirely.

5.2.2 I/O interference

For I/O interference itself, there has been a considerable effort to characterize
and predict I/O performance [PLM+10, MWS+07], which focuses primarily on the
hardware environment.

Chiang et al. [CH11] propose a scheduling system that takes I/O interference
into account, but unlike my work it applies to VM scheduling rather than appli-
cation scheduling, and was only evaluated using simulation.

I/O interference has also been considered in the context of automated stor-
age management. BASIL [GKAK10] and Pesto [GSA+11] utilize models of the
storage system that can be used to predict latency and load balance placement
of virtual hard disks in a storage system. Also focused on virtual machine mi-
gration is Romano [PAL12], which constructs workload and hardware models for
latency prediction on the fly by monitoring parameters such as I/O request size
and queue length, and also includes an aggregation model specifically intended
for dealing with I/O interference. Because these models focus on latency rather
than application performance prediction, they are not directly comparable to my
approach.

Related to my work is the work of Shan et al. [SAS08], which characterizes the
entire I/O behavior of an application using a micro-benchmark; this differs from
my work because I use micro-benchmarks only to establish basic hardware I/O
performance and use an analytical model to describe the application’s behavior.
They also target more traditional supercomputers rather than cloud environments.



5.3 Effects of I/O interference 72

map1 map2 map3 map4 map5 map6

map1

map2

map3

map4

map6

map7

map5

map8

map9

map10

Single task per node:

Four parallel tasks per node:

Elapsed time (seconds)

map7

map10

0 10 20 30 40 50 60 70 80 90

Figure 5.2: Partial time-line of map task execution of the TeraSort workload

5.3 Effects of I/O interference

A MapReduce application consists of many map and reduce tasks that read and
write data on the Distributed File System (DFS) and local disks. In order to
utilize multi-core systems, Hadoop schedules multiple tasks to run simultaneously
on each node. In this case, the node’s I/O resources are divided between these
tasks.

Map and reduce tasks perform a combination of CPU and I/O processing.
Because MapReduce jobs often process very large amounts of data, I/O operations
often dominate the workload and their performance has a significant impact on
the overall workload. Even if the map and reduce function used by the workload
are very CPU intensive, some parts of the workload that are not directly involved
with the execution of those functions are likely to be I/O bound as long as the
data is big enough.

Figure 5.2 shows a partial time-line for one of the nodes in a cluster running
the TeraSort workload. This time-line was taken from an actual execution of the
workload running on the cluster. When the number of tasks that a node executes
in parallel is increased from only a single task to four parallel tasks, the execution
time of each task increases. In addition, a high degree of variation is observed in
the tasks, even though when running only a single task at a time they were all
nearly the same duration. Although this figure only shows what happens to map
tasks on a single node, the same effect was observed for map tasks on all of the
nodes, and was also observed to occur with reduce tasks.

The cause of the increased execution time can be seen when looking at the
CPU and I/O cost for the tasks. The CPU cost is the time it takes for a task’s
CPU processing to complete, including any time it spends waiting to be scheduled
on a CPU. Any time the task is not performing or waiting for a CPU operation
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Figure 5.3: Per-task cost increase when I/O interference occurs

(for example when it is waiting for an I/O request to complete) is not included
in these costs. Basically, CPU cost is the time that any CPU is busy performing
operations for the task plus the time the task spends waiting for a CPU.

The I/O cost is the time it takes for I/O devices to finish servicing requests
from the tasks. This may include time that an I/O request is queued up but not
yet being executed. As with CPU cost, the I/O cost can be basically said to be
the time that any I/O device is busy servicing request for the tasks plus the time
that I/O requests are waiting to be serviced. I only consider disk I/O here, other
types of I/O like memory or network are not included.

Since the CPU cost and I/O cost include the time spent waiting for devices to
become available, they increase when contention occurs for a device. The overall
task execution time is determined by a combination of these two costs. However,
it is not possible to simply sum the costs, as I/O operations are performed asyn-
chronously (even if the process does not explicitly use asynchronous I/O, kernel
and hardware buffering and read-ahead causes many I/O operations to be able to
overlap with CPU activity). The task will be able to perform all or some of its
CPU operations while an I/O device is simultaneously busy servicing requests for
that task.

CPU and I/O costs do not scale the same way, as illustrated in Figure 5.3. As
long as the number of parallel tasks does not exceed the number of CPUs, CPU
contention is likely to be minimal so CPU costs do not increase significantly. With
only a single disk I/O device, those costs increase drastically when contention
occurs. Even if both the CPU and disk are under contention, their very nature
means that disks are likely to have a larger decrease in performance for each task
than the CPU.

In this hypothetical example, the task was CPU bound when running only
a single task at a time, but became I/O bound when running two simultaneous
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Figure 5.4: Average CPU and I/O cost of TeraSort tasks

tasks. This kind of effect, where a task that was CPU bound becomes I/O bound
due to interference is often observed in practice.

This can be observed happening for real in the TeraSort workload used in
Figure 5.1 and Figure 5.2. Figure 5.4 shows how the average CPU and I/O costs
of the tasks in the TeraSort workload increase when the number of tasks per node
is increased from a single task (no parallelism) to 8 parallel tasks. Because the
nodes in the cluster used (see Table 5.4) have 8 CPU cores and the number of
parallel tasks never exceeds 8, no significant CPU contention occurs. Therefore,
the CPU costs remain stable.

However, the nodes of this cluster only have a single storage device, so this
comes under contention when the degree of per-node parallelism is increased. Due
to interference between the tasks, the I/O costs for the task increase significantly
(the actual costs for each individual task may vary strongly as can be observed
from Figure 5.2, Figure 5.4 shows the averages). Just like the hypothetical example
from Figure 5.3, the real TeraSort tasks become I/O bound when their I/O costs
increase due to interference; the map tasks become I/O bound when more than
5 tasks are executed in parallel, and the reduce tasks become I/O bound with
more than 2 parallel tasks (note: this is a simplification; for more details, see
Section 5.4).

Although it is possible to reduce the I/O costs by using compression, this often
adversely affects the overall performance of the application [CGK10].

It is clear that I/O interference can have a significant and complex effect on
the performance of data intensive applications, and that it is necessary to treat
I/O costs separately from CPU costs. In order to be able to model the effects of
I/O interference accurately, the I/O behavior of data intensive applications must
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Figure 5.5: Phases of a map task

be considered in more detail.

5.4 I/O behavior of MapReduce

The effects of I/O interference are dependent on the workflow and I/O patterns
used by the application. Since the I/O interference model is intended to target
MapReduce, its I/O behavior must be examined in detail. Many of these details
will vary depending on the implementation used; the descriptions provided in this
section are valid for Hadoop 0.20, and should mostly still apply to the Hadoop
0.23/2.0 branch as well as they concern task execution, not scheduling.

5.4.1 Processing workflow

While Section 5.3 discussed CPU and I/O costs in the context of tasks, in real-
ity each task must be further broken down into phases : individual steps in the
execution of a task. Each phase in a task performs a distinct operation with its
own CPU usage and I/O pattern, so each phase has its own cost that must be
considered separately from the other phases.

Map tasks

Figure 5.5 shows the structure of a map task in Hadoop, including what types of
I/O are performed by each phase (reads or writes on local, remote or DFS storage).
The task goes through the following phases:

Init The initialization phase includes starting up the Java Virtual Machine for
the task, load task configuration, opening input and output files, and setting
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up various streams and objects used by the task. Although this phase may
perform some minor I/O operations, primarily on support files (JAR archives
and configuration files belonging to the task), this is not significant compared
to I/O performed on the actual input and output data by the other phases
so this is ignored.

Read Data is read sequentially from the task’s input split (typically a block of
a file on the Hadoop DFS), and parsed into records to be consumed by the
map task. If the input is compressed, decompression is also performed in
this phase.

Map The user-specified map function is executed on each record read by the Read
phase.

Collect Records emitted by the Map phase are partitioned and serialized into an
in-memory buffer.

Sort When the space utilized by the in-memory buffer reaches a certain threshold,
a background thread sorts the contents of the buffer first by partition and
then by key. After the map function finishes, the final contents of the buffer
are also sorted.

Spill After the buffer has been sorted, its contents are written to a spill file on the
local disk. This happens both on a background thread if the buffer reaches
the threshold during map execution, and after the map function finishes to
spill the final sorted contents of the buffer. If the task uses a combiner
function, it will be executed during this function. Spilling may also include
compressing the intermediate data.

Merge If more than one spill was performed, the individual spill files must be
merged into the task’s final output. The merge phase reads all the previous
spill files, merges their contents, and writes the output back to local disk
(performing compression and decompression as necessary). Depending on
the number of spill files, multiple merge passes may be performed. Option-
ally, the combiner function can be executed again if the number of spills
exceeds a user-specified value. If there was only one spill, that spill file is
simply renamed to the map task’s output file name so no additional I/O is
performed.

Shutdown When the task finishes processing, it informs the Tasktracker of suc-
cessful completion and various execution statistics, and then shuts down any
background operations. Depending on the settings for reusing instances of
the Java Virtual Machine, the process may be terminated.
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The read, map and collect operations are performed in an interleaved fashion:
a single record is read, the processed by the map function and the output for that
record is collected before repeating the cycle for the next input record. Because of
this, it is considered to be a single phase for the purposes of the I/O interference
model in most cases.

Note that the structure of a map task is somewhat different if the job has no
reduce tasks. In this case, the collect phase is replaced with writing directly to
the job output (typically on the DFS) and the sort, spill, and merge phases do not
occur. The shutdown phase also commits the output in this case. This situation
is trivial so it is not considered further.

All I/O performed by a map task’s phases is sequential. The read phase se-
quentially reads a file, and the spill phases sequentially write them. The merge
phase sequentially reads multiple spill files in an interleaved fashion, but aggressive
buffering is used so the overhead compared to a regular sequential read is minimal.
The output of the merge phase is also sequentially written.

Reduce tasks

The structure of a reduce task is shown in Figure 5.6, including information about
the I/O operations performed by each phase. The operation of a reduce task goes
through three distinct stages—shuffle, sort and reduce—which are made up of the
following phases:

Init Reduce task initialization is analogous to map tasks, starting the Java Virtual
Machine, loading configuration, and preparing input and output files and
other necessary objects for the task. No significant I/O is performed in this
phase.

Shuffle During the shuffle phase, the task periodically queries the Tasktrackers
on the cluster to see if output files of the map tasks of the job are available.
If an output file is available, it is transferred from the remote host into an
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in-memory buffer. If a single map output file is too large (by default more
than 25% of the total shuffle buffer space), it is shuffled to disk instead, so
this phase performs reads of files on remote hosts and can potentially write
to files on the local disk.

Merge When the memory buffer reaches a certain threshold, the segments are
merged into an on-disk segment by a background thread. If the number of
on-disk segments (which includes segments shuffled directly to disk by the
shuffle phase) exceeds a certain threshold, a background on-disk merge can
also be performed.

When the shuffle phase finishes, the a portion of the remaining in-memory
segments is merged to disk to satisfy the reduce input buffer memory limit
(by default this limit is 0%, so all segments are vacated from memory). If
the number of on-disk segments is less than the maximum number of disk in-
puts for a single merge pass (the merge factor), the in-memory segments are
vacated by a separate merge operation; otherwise, the in-memory segments
are vacated as part of the intermediate merge passes done on the on-disk seg-
ments. Intermediate merge passes are performed until the remaining number
of on-disk segments is less than or equal to the merge factor.

Read The remaining on-disk segments (and any in-memory segments if not all
segments were vacated) are merged here, and the resulting records are passed
straight to the reduce phase.

Reduce The user-specified reduce function is invoked for each key and the asso-
ciated set of values.

Write The result of the reduce function is written to a temporary output file on
the Hadoop DFS.

Shutdown Reduce task shutdown performs the same operation as map task shut-
down, but is also responsible for committing the output. Output is atom-
ically committed by the Jobtracker at which point the temporary output
file on the DFS is renamed to the final output file name. This ensures that
only the output of a single task attempt is retained if speculative execu-
tion was used or a previously thought to have failed task attempt resumes
communication after it had already been re-executed elsewhere.

Like the map tasks, most of the I/O performed by the reduce tasks is sequential,
with the same comments for the merge and read phases that applied to the map
task’s merge phase regarding reading multiple streams for merging. The write
phase also performs strictly sequential writes to the output.
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Figure 5.7: Partial time-line of map task phases of the TeraSort workload

The shuffle phase is the only phase that has a significantly different I/O pattern.
Reduce task input is divided into segments, with one segment being read from the
output files of each map task spread over the entire cluster. While each segment
itself is read sequentially, the set of segments for a particular reduce task is not
stored sequentially (or even on the same node) and is not guaranteed to be read in
any particular order. As a result there is a cost for doing a random I/O operation
(disk latency and seek costs) involved for each of the segments of a reduce task’s
input.

5.4.2 I/O interference effects on phases

During their execution, map and reduce tasks go through a number of phases of
execution. If multiple tasks are running at the same time, it is not guaranteed that
all those tasks are executing the same phase at the same time, which can be seen
in Figure 5.7. This figure shows a time-line similar to Figure 5.2 amended with
information about what phase each task is in at any given time. The half-height
bars for sort and spill indicate that it is processing these phases in the background
at the same time as the read/map/collect cycle.

The reason that tasks are not always executing the same phase is that tasks
are typically not identical in duration (due to data skew, processing skew, or
because the tasks are simply part of different workloads), but even for tasks that
are normally very similar in execution time this situation can occur because of the
variance in task execution time caused by I/O interference that was observed in
Figure 5.2.

As a result, a phase may experience interference from any other phase that
could potentially be active in other tasks at the same time. The changes in overlap
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Figure 5.8: Execution time of each task phase for TeraSort

are one of the reasons for the observed variability between the tasks (along with
scheduler and hardware behavior).

It is not always straightforward to determine which phases have how much
interference, because sometimes interference can appear to manifest in a phase
other than the one that actually caused it. This can be seen in Figure 5.8, which
shows the average execution times of each phase in the TeraSort workload. The
figure does not distinguish CPU and I/O cost for each phase because it is not
possible to accurately measure those costs for each phase when there is more
than one parallel task, partially due to the issue under discussion here. Look for
example at the the spill phase in Figure 5.8a and the write phase in Figure 5.8b.
These phases perform large amounts of write I/O and are therefore subject to
interference, yet the measured execution time does not appear to increase with
higher numbers of parallel tasks. This is because write caching is used on the
system, so the measured time only includes the time necessary to write that data
into the cache. The time necessary to actually write the data is not entirely gone
from the measurements, however, since other tasks (or even the same task) are
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Figure 5.9: Execution times of multiple runs of the TeraSort workload

reading data from disk at the same time, and therefore experiencing interference
from those cached writes, increasing their measured execution time.

Because of these issues, it is not possible to predict exactly which phase will be
receiving interference from which other phase at which time without an excessively
detailed simulation of all components in the system that may affect task execution.
Subsequently, it is not possible to give detailed predictions about the behavior of
individual tasks in a workload.

However, I observed that when running a workload multiple times the overall
execution time of the workload remains relatively stable, even though individual
tasks may vary wildly from run to run. Figure 5.9 shows the execution times of
10 individual executions of the TeraSort workload. The overall job execution time
varies by at most 3%, and similarly stable values were observed for the average
phase execution times like those shown in Figure 5.8. This means that while
some phases have more or less interference than others, the overall effect of the
interference on the entire workload does not change significantly.

5.4.3 Fragmentation

I/O performance may be affected by external factors that are not directly related
to the workload. One such factor is file fragmentation.

Hadoop stores both DFS block files and intermediate files in regular Linux files
on the local disks of the nodes in the cluster. This means that Hadoop has no
control over the allocation of physical blocks for the files, but is dependent on the
kernel I/O scheduler and allocation strategy used by the file system driver. Files
used by Hadoop can therefore be subject to file fragmentation depending on the
conditions under which they were created. When reading a fragmented file, what
appear to be sequential I/O operations from the point of view of the application
may in fact not be sequential at all.
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Although reading a fragmented file can have a significant impact on perfor-
mance and be much slower than reading a fully defragmented file, it was not
observed to have a significant impact on how processes reading files simultane-
ously interfere with each other. However, when multiple processes are writing files
simultaneously, this has the effect of vastly increasing the amount of fragmenta-
tion for those files in many file systems, particularly those that do not support
pre-allocation such as the popular ext3 file system (note: Hadoop in particular
does not use pre-allocation so even if a file system supports it, it does not improve
the situation for Hadoop). Files that were written under conditions of I/O inter-
ference may suffer severe fragmentation and therefore reduce performance during
reading.

This is particularly important for intermediate files in MapReduce. Intermedi-
ate files are written and read by the same job, so any interference during writing
affects the performance of reading those files at a later time during the same job.
Fragmentation of the intermediate files was observed to have a significant impact
on the overall performance of a MapReduce workload in Hadoop in some cases,
so being able to predict when fragmentation occurs and how much this will af-
fect subsequent reading of those files is an important part of being able to model
MapReduce’s I/O behavior.

5.5 I/O cost model

Based on the observations made in the previous sections, I propose an I/O cost
model that is able to predict the effects of I/O interference on tasks executed in
parallel that are accessing the same disk I/O resource simultaneously.

Figure 5.10 shows the workflow of the prediction process in the I/O interference
model. The model consists of two separate components: a hardware interference
model and a MapReduce model.

The hardware interference model is used to calculate how the I/O cost of a
task changes when I/O interference occurs. This is accomplished by first assuming
that bandwidth is split evenly amongst homogeneous tasks, so if there are N tasks
running each task gets 1

N
th of the bandwidth, increasing the costs by a factor of

N . After this, hardware specific interference functions are applied to the cost.
These functions are derived from the hardware environment by running micro-
benchmarks for each I/O pattern employed by the application.

The MapReduce model is an analytical model of the MapReduce processing
workflow based on the division of tasks into phases according to Figure 5.5 and
Figure 5.6. It uses the CPU and I/O cost of a phase, modified to account for
interference, to calculate the overall phase cost, which essentially represents the
execution time of an individual phase. The larger of the two cost values is used,
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Figure 5.10: Modeling workflow

because I/O operations are performed asynchronously. Based on the phase costs
the average task execution time is calculated, and from that the map and reduce
stage execution time and the overall job execution time.

The I/O interference model takes as input several parameters, which are given
in Table 5.1.

Global workload parameters apply to the workload as a whole rather than
individual tasks or phases. Phase parameters have different values for each of the
phases of map and reduce tasks, and describe the basic CPU cost of a phase as
well as the amount of data read and written by a phase from which the I/O cost
can be calculated.

System parameters describe a few configuration parameters of Hadoop that are
relevant to the model, which includes the number of parallel map or reduce tasks
per node. Hardware parameters provide basic hardware performance character-
istics, as well as the hardware specific interference function derived from micro-
benchmarks.

Section 5.5.1 describes how workload parameters are estimated, and how hard-
ware parameters and the hardware specific interference functions are determined
is explained in Section 5.5.4.

In addition to the parameters from Table 5.1, the equations in this section use
additional symbols defined in Table 5.2.

I/O costs can include network transfer costs for I/O operations that are per-
formed on remote hosts. However, in my experiments the disk I/O costs always
exceeded the network transfer costs, and since cloud data centers usually provide
generous network bandwidth this is expected to often be the case. Therefore,
network transfer costs are omitted from the I/O costs in this section.
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Workload (global)

Nmap
tasks Number of map tasks

N reduce
tasks Number of reduce tasks

Workload (phase)

Sread Data read in bytes

Swrite Data written in bytes

CPUphase CPU cost in seconds

Environment (system)

Nnodes The number of nodes in the cluster

Nmap
slots Number of parallel map tasks per node

N reduce
slots Number of parallel reduce tasks per node

Theartbeat Hadoop heartbeat interval

Hoob
Boolean indicating whether out-of-band heartbeats
are enabled

Environment (hardware)
Ncpus The number of CPUs in each node

Rdisk The cost of reading 1 byte, in seconds

Wdisk The cost of writing 1 byte, in seconds

Crandom The cost of a random I/O operation

F The fragmentation factor

F shuffle
threshold

The threshold segment size for fragmentation in the
shuffle phase

fi The hardware specific interference function

Table 5.1: Model parameters

The goal of the model is to predict how performance is affected when the system
parameters Nmap

slots and N reduce
slots change, which express the degree of parallelism per

node for both types of tasks. These values can be configured separately, and indeed
often have different optimal values even for the same workload.

The output of the model is a prediction about the effect of interference for
each value of Nmap

slots and N reduce
slots on the average map and reduce task execution

time respectively, as well as the overall job execution time; it also provides predic-
tions about the costs of each phase that provide insights into which parts of the
application are I/O bottlenecks.
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Symbol Meaning

CPUactual
phase CPU cost of a phase including CPU contention

IOread
phase Read I/O cost of a phase including I/O interference

IOwrite
phase Write I/O cost of a phase including I/O interference

Cphase
The total cost of a phase (used as a placeholder for
the specific phases given below)

Cmap
init Map task init phase cost

Cmap
rmc Map task read/map/collect phases cost

Cmap
sort Map task sort phase cost

Cmap
spill Map task spill phase cost

Cmap
merge Map task merge phase cost

Creduce
init Reduce task init phase cost

Creduce
shuffle Reduce task shuffle phase cost

Creduce
merge Reduce task merge phase cost

Creduce
rrw Reduce task read/reduce/write phases cost

Tmap
work

Total execution time of all processing phases in a map
task

T reduce
work

Total execution time of all processing phases in a re-
duce task

T poll
interval Shutdown polling interval

Tmap
task Total execution time of a map task

T reduce
task Total execution time of a reduce task

Tmap
slot The time a map task occupies a slot

T reduce
slot The time a reduce task occupies a slot

Tmap
stage Map stage total execution time

T reduce
stage Reduce stage total execution time

Tjob The total time for the workload

Rthroughput Average hard disk read throughput

Wthroughput Average hard disk write throughput

Rfragmented
throughput Throughput of reading a fragmented file

Nslots
Placeholder for either Nmap

slots or N reduce
slots , depending on

context

Table 5.2: Additional model symbols



5.5 I/O cost model 86

5.5.1 Measuring workload parameters

The workload parameters are given in Table 5.1. The parameters are determined
from two primary sources, job history and log files. When executing a job, the
Jobtracker records a history of events for the job which includes the start and end
time of each task attempt, and the values of all counters for each task attempt
(counters contain information such as the number of records and the amount of
DFS and local data read and written). During execution, each task creates a
log file containing diagnostic information about the execution of that task. Both
job history files and task log files are retained by Hadoop for some time after
a job finishes (even if the cluster is restarted), so they are available to read the
information from.

Global workload parameters are trivially determined, as they depend only on
the workload’s input data and the configuration used by the user. Nmap

tasks is deter-
mined by the number of DFS blocks the input has and the maximum split size.
N reduce

slots must be explicitly set by either the system administrator or the user that
submits the workload. If a workload is already executed, these parameters can be
trivially determined from the job history file created by Hadoop.

Phase parameters need to be determined per phase, and the only way to de-
termine them is to execute the tasks in the workload. For each phase, the values
of CPUcost, Sread and Swrite need to be determined. For some phases, the values
of Sread and Swrite are already recorded in the task’s counters or its log file, but
in some cases the information is either not recorded or combines the figures from
several phases (for example, each task maintains a counter of how many local bytes
were read and written, but it does not indicate how many of those were written
by e.g. the spill or merge phases for a map task).

In order to be able to determine these parameters, I made two modifications
to Hadoop 0.20.203.0:

1. Timers are kept during execution to record the CPU time and elapsed time
of the phases. This information is recorded in the task log files.

2. Read and write data sizes for phases that were not already recorded in either
the log file or history file are added to the log file.

No further modifications are made to Hadoop. I considered using a profiler
instead of modifying Hadoop similar to the approach used in [HDB11], but found
that the overhead of the profiler skewed the results too much.

In order to save time, it is not necessary to execute the entire workload. Instead,
only a portion of the tasks need to be sampled to get a reasonably accurate value
for the average costs.
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After the test workload is executed, an automated tool retrieves and processes
the job history, task log files, Datanode log files, and Tasktracker log files, extract-
ing the values of the parameters for each phase.

The modified version of Hadoop and the workload analyzer are described in
further detail in Section 6.4.

5.5.2 Phase cost estimation

Each phase has its own cost, which has its own symbol in the model. The symbols
for the phases are Cmap

init , Cmap
rmc , Cmap

sort , Cmap
spill , C

map
merge, C

reduce
init , Creduce

shuffle, C
reduce
merge , and

Creduce
rrw . Note that the shutdown phase for both map and reduce tasks is treated

specially and does not have a normal cost calculation; how the shutdown phase is
factored in is explained in Section 5.5.3.

Because the formulas for each phase are largely the same, the symbol Cphase

is used as a generic symbol indicating the cost of any of those phases. It should
be replaced with any of the above symbols depending on which phase is being
calculated. Similarly, values of phase-specific parameters and symbols such as
CPUphase, Sread and Swrite should be set to their respective values for the relevant
phase. The symbol Nslots is used to represent either Nmap

slots or N reduce
slots depending

on whether the phase is part of a map or reduce task respectively.
The basic cost calculation used for each phase is as follows:

Cphase = max(CPUactual
phase , IO

read
phase + IOwrite

phase) + fi (5.1)

Phase costs are calculated by taking the higher value of either the CPU cost
or I/O cost for a phase, based on the observation that I/O is performed asyn-
chronously. The hardware specific interference function fi, which is described in
Section 5.5.4, is added separately from the I/O costs because it may interact dif-
ferently with the CPU costs in some environments (for example, some interference
costs may not be able to fully overlap with any CPU costs, such as interference
that happens when a stream first starts reading); if this is the case it should be
reflected by fi itself.

CPUactual
phase is a modified version of CPUphase that accounts for any CPU con-

tention that may occur when running tasks in parallel. It is calculated under the
assumption that a phase can at most use one core (the phases themselves do not
contain parallelism), and that CPU time is divided equally between tasks if the
number of tasks exceeds the number of CPU cores:

CPUactual
phase = CPUphase ·max(1,

Nslots

Ncpus

) (5.2)

This equation increases the CPU costs if the number of parallel tasks exceeds
the number of costs, but does not decrease it if there are unused CPU cores due
to the fact that a task can use at most one CPU core.
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Equation (5.1) and Equation (5.2) are used for all phases, but the calculation
of IOread

phase and IOwrite
phase is dependent on the IO pattern used by the phase. The

calculations for each of the I/O patterns for MapReduce are given below.

Sequential I/O

For phases that perform sequential I/O operations, the basic I/O costs for reading
and writing are calculated by simply multiplying the data sizes with the hardware
cost of reading and writing:

IOread
phase = Nslots · Sread ·Rdisk (5.3)

IOwrite
phase = Nslots · Swrite ·Wdisk (5.4)

The basic I/O costs are multiplied by the value of Nslots to represent the as-
sumption that bandwidth is divided evenly between tasks running simultaneously.
Additional interference between the parallel streams is incorporated by fi, and not
by these I/O cost calculations.

Equation (5.3) and Equation (5.4) are used for the values of IOread
phase and IOwrite

phase

in Equation (5.1) for the calculation of the costs for the map task init (Cmap
init ), read/

map/collect (Cmap
rmc ), sort (Cmap

sort ), spill (Cmap
spill ), and merge (Cmap

merge) phases, and the

reduce task init (Creduce
init ) and merge (Creduce

merge ) phases.

Note that in several of these phases, the value of IOread
phase or IOwrite

phase can be
zero, because not all phases perform read or write I/O. For the map and reduce
task init phases, and the map task sort phase no I/O is performed at all, so the
value of Cmap

init , Cmap
sort and Creduce

init is always equal to CPUactual
phase .

Fragmentation

As noted in Section 5.4.3, intermediate files may become fragmented when multiple
tasks are writing intermediate files concurrently. As a result of that fragmentation,
the performance of reading those files back may be considerably lower. Therefore,
while the cost of writing the files does not change, it is necessary to alter the cost
of reading the files for any phase that reads intermediate files that may have been
fragmented by interference when they were written. In theory, this can happen to
any phase that reads intermediate files. In practice, I only found this to have a
significant effect on the reduce task shuffle and read phases.

Intuitively, fragmentation will cause an additional non-linear decrease of read
throughput (or a non-linear increase of I/O costs) when the degree of parallelism
is increased. The size of this additional cost increase depends on the amount of
fragmentation caused by the interference. To express this level of fragmentation,
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I use the fragmentation factor parameter F whose derivation is described in Sec-
tion 5.5.4. For phases where fragmentation is an issue, IOread

phase is replaced with

IOread
phase

′
:

IOread
phase

′
= Nslots

F · Sread ·Rdisk (5.5)

The value IOread
phase

′
from Equation (5.5) is used in Equation (5.1) for the cal-

culation of the I/O costs of the reduce task read/reduce/write phase (Creduce
rrw ).

Equation (5.4) is used for IOwrite
phase, because all writes performed by the reduce task

write phase are sequential.

Shuffle I/O

For the I/O pattern used by the reduce task shuffle phase, additional costs for the
random I/O operations performed for each input segment must be added to the
phase cost. Because I found that these costs cannot overlap with the CPU costs,
the value of Cphase from Equation (5.1) is augmented as follows:

Cphase
′ = Cphase + Nslots · (Nmap

tasks · Crandom) (5.6)

Each reduce task reads a single segment from each map task, so the number
of segments is equal to the number of map tasks (Nmap

tasks). The cost of the random
I/O (Crandom) is hardware specific and further explained in Section 5.5.4.

The shuffle phase may be subject to fragmentation, but I found this did not
manifest for small segment sizes; if the segments are very small, the odds of a non-
contiguous read occurring within a segment decrease and the effect of fragmenta-
tion will be negligible. In the model this is expressed using F shuffle

threshold, which is the
minimum segment size before fragmentation is assumed to take effect. Therefore,
IOread

phase from Equation (5.1) is replaced with the alternative value IOread
shuffle:

IOread
shuffle =

{
IOread

phase if Sread

Nmap
tasks

< F shuffle
threshold

IOread
phase

′
if Sread

Nmap
tasks

>= F shuffle
threshold

(5.7)

The value Cphase
′ from Equation (5.6) using IOread

shuffle is used for the calculation

of Creduce
shuffle. The value of IOwrite

phase is the same as for sequential I/O.

Remote I/O

When a task performs I/O on a remote host, it contributes to the interference on
the destination node rather than the one the task is running on. This can occur
for map tasks when they are scheduled on a node that does not have the task’s
input data. However, the scheduler tries to avoid this and it does not happen often
enough to significantly affect the execution time.
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For reduce tasks, the shuffle phase reads data from both local and remote hosts.
It is necessary to know how much data is read on average from each node per task.
Each task reads on average 1

Nnodes
· Sread bytes from each node (including its local

node), so the total amount of data read per node is Ntasks

Nnodes
·Sread. To get the average

per task, this value is divided by the number of tasks per node, Ntasks

Nnodes
, which equals

Sread. This means no adjustment to the shuffle phase formula is necessary.

Read and write caching

The input data for any phase may already be cached by for example the operating
system page cache or any hardware caches being used. If this is the case the I/O
costs of a phase are reduced depending on the amount of data that did not need
to be read from the disk.

For the input data of the job it cannot be known whether this data is cached
as the circumstances and time of its creation are usually not known. Therefore,
the input of the map tasks is always assumed to be entirely not cached. During
the experimental evaluation in Section 5.6, the cache is always cleared before each
experiment so that this is the case.

Intermediate data is more complex. This data is written by the job, and parts
of it may still reside in memory by the time it is read back. Whether or not this is
the case and how much data is retained depends on the size of the data, the time
between writing and reading back, the size of node’s cache memory, memory and
cache utilization of the system (both from this workload and any other processes
on the system), etc. Accurately predicting when caching occurs and by how much
is therefore very complicated and outside of the scope of this work.

To deal with caching, I use a simple heuristic that says that if the data size per
task and the total data size in a wave of tasks on a single node is below a certain
threshold for some phases (the map task merge phase, the shuffle phase, and the
reduce task read phase), all data is assumed to be cached. The main reason for
this is the shuffle phase: if the intermediate data is very small, the random I/O
cost per segment dominates the cost of the shuffle phase, but this cost may not be
incurred if the data is cached leading to a very large over-estimation. By assuming
the data is cached for very small data sizes, this overhead is avoided. On the
environment described in Table 5.4, the task threshold is set at 12.5% of main
memory and the wave threshold at 25% of memory. For the shuffle phase, the
total output size of all map tasks per node must not exceed 25% of main memory.
When these conditions are met, Sread for that phase is considered 0.

Writing is also a complex issue. All write operations are normally cached and
flushed to disk at a later time. Therefore, the actual phase doing the writing may
not observe any of the I/O costs of writing. However, when the data is written
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to the device this may slow down other parts of the workload, which is why these
costs must still be included.

Flushing is handled by the file system driver, which regularly flushes data,
usually preferring to do this when the device is not fully utilized. However, when
the amount of dirty pages in the cache exceeds the dirty_background_ratio

parameter of the Linux kernel, flushes will be scheduled immediately. These writes
may occur during unfavorable conditions, and can block read operations on the
same device for a significant amount of time. When the amount of dirty pages
exceeds dirty_ratio, processes will be forced to perform write-back during their
time slot. Note that any process can be forced to do this; it is not necessarily
the process that caused the high write pressure, or even one that is writing to the
same device.

Because of these factors, if the amount of data being written is very large
writes essentially become synchronous. As with read caching, it is very difficult
to accurately predict when this situation will occur. Therefore, I again use a
heuristic approach such that if the total data size read and written in a task is
above a certain threshold and the total data size of the wave is above a certain
threshold, writes are considered to be synchronous and can no longer overlap with
CPU time. This is used for the reduce task read/reduce/write phase, and for the
combined shuffle and merge phases. On the environment described in Table 5.4,
the task threshold is set at 25% of main memory and the wave threshold at 50%
of memory.

5.5.3 Task and workload estimation

Once the individual phase costs are determined, the overall execution time of a
map or reduce task can basically be estimated as a sum of the individual phase
costs. Although some phases may be executed in parallel with other phases (for
example the map task sort and spill phases can overlap with the execution of
the read/map/reduce phases), I use the assumption that either the node’s CPU
cores are fully saturated or the tasks are I/O limited, so in either case there is no
practical difference to using a sum.

However, one phase needs to be given special consideration, because it does
not perform any real computation: the shutdown phase for both map and reduce
tasks. The execution time of the shutdown phase is determined primarily by a
waiting operation that depends on a a polling interval. Basically, the shutdown
phase waits for a background progress reporting thread to end, and this thread
checks whether it needs to end on a set interval, represented here as T poll

interval (this
value is hard coded at three seconds in Hadoop 0.20). This thread is started at
the end of the init phase for both map and reduce tasks, so that is the time from
which polling starts.
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In order to account for this behavior of the shutdown phase, I first determine
the work time of the map and reduce tasks, which is the time spent in all phases
that perform actual work (all phases except init and shutdown. For map tasks,
this is calculated as follows:

Tmap
work = Cmap

rmc + Cmap
sort + Cmap

spill + Cmap
merge (5.8)

And analogously for reduce tasks:

T reduce
work = Creduce

shuffle + Creduce
merge + Creduce

rrw (5.9)

To calculate the total execution time for a task, this value must be rounded
up to the nearest multiple of the shutdown polling interval T poll

interval, and the cost
of the init phase must be added. For map tasks:

Tmap
task = Cmap

init +

⌈
Tmap
work

T poll
interval

⌉
· T poll

interval (5.10)

And similarly for reduce tasks

T reduce
task = Creduce

init +

⌈
T reduce
work

T poll
interval

⌉
· T poll

interval (5.11)

This is however not the final calculation done for a task. The Jobtracker only
schedules a new task for a newly available slot when it receives a heartbeat from the
relevant Jobtracker. Therefore, the time that a task actually occupies a slot lasts
until the next heartbeat after the task finishes. Since tasks are always started on
heartbeats, this means the task execution time must be rounded up to the nearest
multiple of the heartbeat interval (which is calculated based on the number of
nodes but is at least 3 seconds in Hadoop 0.20).

Hadoop can be configured to use out-of-band heartbeats. If this option is en-
abled, a Tasktracker sends a heartbeat to the Jobtracker immediately after a task
finishes. This means there is no delay in scheduling new tasks at the cost of
increased communication between the Tasktrackers and the Jobtracker. In the
model, the system parameter Hoob indicates whether out-of-band heartbeats are
enabled or not.

Therefore, the calculation of the slot time is as follows for map tasks:

Tmap
slot =

{⌈
Tmap
task

Theartbeat

⌉
· Theartbeat if ¬Hoob

Tmap
task if Hoob

(5.12)



5.5 I/O cost model 93

And for reduce tasks:

T reduce
slot =

{⌈
T reduce
task

Theartbeat

⌉
· Theartbeat if ¬Hoob

T reduce
task if Hoob

(5.13)

Based on the slot time for a task, the overall execution time of the map and
reduce stages, Tmap

stage and T reduce
stage , can be calculated. Each stage executes in a

number of waves, where each wave consists of the total number of tasks the cluster
can run in parallel for that task type (the cluster capacity). At the end of each
stage, there may not be enough tasks left in the final wave so that all nodes are
running Nslots tasks. During this final wave there would be less interference on
those nodes than what the model predicts. Because this is outside the target of
this model, the last wave is excluded from the stage time. If desired, a separate
interference calculation could be done for the final wave and that value could
be added to the stage times, but task skew, stragglers, and the fact that the
scheduler is not guaranteed to run the same number of tasks on each node in these
circumstances mean that this calculation would necessarily be less accurate than
the calculation for the “full” waves.

The map stage execution time is calculated as follows:

Tmap
stage =

⌊
Nmap

tasks

Nmap
slots ·Nnodes

⌋
· Tmap

slot (5.14)

I take the floor of the number of waves to represent the fact that the final,
partial wave is excluded.

The reduce stage execution time is calculated as follows:

T reduce
stage =

⌊
N reduc

tasks

Nmap
slots ·Nnodes

⌋
· T reduce

slot (5.15)

The total execution time of the job can then be estimated as follows (with the
caveat that the real execution time is slightly longer because of the final wave):

Tjob = Tmap
stage + T reduce

stage (5.16)

Although it is possible for the first wave of reduce tasks to be scheduled while
the map tasks of the job are still running, in practice I found this did not affect the
overall execution time of the job much. Additionally, the Hadoop YARN scheduler
in Hadoop 0.23 (the current alpha version of Hadoop) removes the notion of slots
and the distinction between map and reduce tasks, instead scheduling based on
resource requests. In Hadoop YARN, it therefore no longer occurs that a reduce
task for a job can be scheduled while there are still remaining unscheduled map
tasks.
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5.5.4 I/O interference estimation

I/O interference and the effects it has depend on a large number of factors, includ-
ing application behavior, the operating system kernel scheduler and I/O scheduler,
hardware behavior, and others. Because it would not be feasible to create a de-
tailed analytical model of all these components for any given environment, instead
I use a black-box approach to approximate the behavior of the hardware environ-
ment.

Micro-benchmarks are used for each I/O pattern to determine the hardware
specific interference function and other relevant hardware parameters given in
Table 5.1. These benchmarks are used to observe how the system behaves under
circumstances that replicate those found in the actual application. The micro-
benchmarks do not attempt to emulate the overall application behavior; each
focuses on only a single I/O pattern, and the MapReduce model described above
is used to tie them together.

In this section, the results of each benchmark and the functions and values
derived from them are given. These results are based on the hardware environ-
ment described in Table 5.4. However, the method used to finding these values is
applicable to any environment.

Because the systems used for these experiments have 8 CPU cores and I do
not intend to run more than 8 tasks in parallel on them, the maximum degree of
parallelism employed in the benchmarks is also set at 8.

The following sections provide the benchmarks and their results for the I/O
patterns used by Hadoop.

Sequential I/O

For sequential I/O operations, the values of the Rdisk and Wdisk parameters must
be determined, as well as the hardware dependent interference function fi.

The Rdisk and Wdisk parameters represent the cost of reading from or writing
to a disk, in seconds per byte. This cost is the calculated using the inverse of the
throughput in bytes per second:

Rdisk =
1

Rthroughput

(5.17)

Wdisk =
1

Wthroughput

(5.18)

Rthroughput and Wthroughput are the average read and write throughput for the
device, measured using a single stream. To adjust the value as necessary for larger
number of streams, fi is used.
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Figure 5.11: Read and write throughput of the hardware environment from Ta-
ble 5.4, using between 1 and 8 parallel streams

To determine the values of these parameters, I use a micro-benchmark that
does the following:

• Before each experiment, the operating system cache is cleared using a kernel
software option, and any hardware caches are cleared by reading 2 gigabytes
of unrelated data.

• Read N files in parallel from the disk, and record a time-line of the operation.

• Write N files in parallel from the disk, and record a time-line of the operation.
The O_SYNC option is used to bypass any operating system and hardware
write caching.

The value of N is varied to get information about different degrees of parallelism
(in this case, it is varied between 1 and 8).

Figure 5.11 shows the read and write throughput measured by the micro-bench-
mark for each number of parallel streams. The throughput value shown is the
aggregate throughput across all streams.

For reading, I observe an average throughput of 360 megabytes per second for
a single stream, and the total throughput does not diminish significantly when the
number of parallel streams is increased. While each individual stream of course
gets a smaller portion of the overall throughput, the total performance of the
device is not significantly affected. This is because each node in this environment
uses a RAID array for storage, which has a large (1GB) cache and uses an efficient
read-ahead caching strategy for multiple sequential streams.

However, the time-line of reading the streams must also be considered. A
partial time-line for reading a single stream is shown in Figure 5.12. This figure
shows how the throughput of the stream changes over time as it is being read.



5.5 I/O cost model 96

0

100

200

300

400

500

0 0.1 0.2 0.3 0.4

Th
ro

u
gh

p
u

t 
(M

B
/s

)

Elapsed time (s)

Figure 5.12: Time-line of read throughput when reading a single stream on the
hardware environment from Table 5.4
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Figure 5.13: Time-line of read throughput when reading 8 streams in parallel

What can be observed is that there is a delay of almost 100 milliseconds before
reaching a stable throughput of approximately 384 megabytes per second. This
delay at the start is caused by random I/O costs to seek to the start of the stream,
and a delay before the RAID array starts read-ahead caching. A small drop in
throughput is observed every 50 milliseconds or so, which I believe is also due to
the size of the read-ahead cache (the dips occur almost exactly every 16 megabytes
into the file after the start of read-ahead).

A time-line for reading 8 streams in parallel is shown in Figure 5.13. What
can be observed is that the streams initially perform very erratically, as they no
longer all show the same delay at the start. This increased delay is caused by
interference between the streams before the read-ahead kicks in. However, when
all streams have properly started reading, they are able to each maintain the same
stable throughput, and share the device’s total throughput between them equally.

The increase in the start-up delay due to the interference before read-ahead is
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somewhat erratic, but on average it appears to be increase linearly in respect to
the number of parallel streams.

Based on these observations, the value for Rthroughput is set at 380 megabytes
per second (slightly lower than the observed peak throughput to account for the
occasional drops). This means that Rdisk is set as follows:

Rdisk =
1

398458880
= 2.5× 10−9 (5.19)

To account for the 100 millisecond start-up delay and the increase of that delay
when the number of streams increases, I determine fi to be as follows for reads:

fi =

{
0.1 ·Nslots if Sread > 0

0 if Sread = 0
(5.20)

For writing, the average throughput for a single stream seen in Figure 5.11
is approximately 167 megabytes per second. Writing performance is likely lower
than reading performance due to the use of a RAID6 volume, which adds additional
overhead for writing due to the necessary updates on the checksum volumes. When
the number of parallel streams is increased, the aggregate throughput across all
streams initially remains stable but then drops off to about 150 megabytes per
second.

Unlike with reading, the time-line for writing shows no delay at the start,
and all streams have a stable throughput throughout regardless of the number
of parallel streams. Therefore, the observed average throughput can be used for
Wthroughput. To ease the approximation of the interference, the lowest observed
total through of 150 megabytes per second is used. This means that Wdisk is set
as follows:

Wdisk =
1

157286400
= 6.4× 10−9 (5.21)

It is not necessary to modify fi for writes.
For some devices (for example regular single hard disks), behavior when reading

multiple streams could be much more complicated, which means it is much more
difficult to determine fi. It may be necessary to employ statistical approximations
to determine an accurate interference function in this case. Refining the technique
for finding fi for different environments is part of the future work for this research.

Shuffle I/O

The reduce task shuffle phase reads input data in segments, and it is necessary
to measure the random I/O cost associated with each segment to determine the
value of Crandom for use in Equation (5.6).

The micro-benchmark used to determine these values works as follows:
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Figure 5.14: Time-line of read throughput reading segments from multiple files
using a 256 megabytes segment size

• Create 256 files containing random data, from which the segments will be
read.

• Before each experiment, the operating system cache is cleared using a kernel
software option, and any hardware caches are cleared by reading 2 gigabytes
of unrelated data.

• Read a total of 2 gigabytes by reading S megabytes from each file, starting
at a random offset in each file. Record a time-line of the operation.

The value of the segment size S is varied between 8 and 256 megabytes. Because
the total size of the data read is kept at 2 gigabytes, this has the effect of changing
the number of segments read. The full 256 input files are only used with the 8
megabytes segment size.

Figure 5.14 shows a partial time-line when the segment size is 256 megabytes
is used on the hardware environment from Table 5.4. It can be observed that the
delay between each segment matches the 100 millisecond delay at the start of each
stream when measuring sequential I/O. When the segment size is decreased, this
observation holds. Therefore:

Crandom = 0.1 (5.22)

In order to test whether this approximation works before applying it to the
model as a whole, I compared the transfer time taken from the micro-benchmark
against a prediction using this value of Crandom. The transfer time was predicted
using the following equation derived from Equation (5.6):

Sread ·Rdisk +
Sread

Ssegment

· Crandom (5.23)
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Figure 5.15: Measured and predicted shuffle I/O performance

Sread is the 2 gigabytes used by the micro-benchmark, and Ssegment is the seg-
ment size. The results are shown in Figure 5.15, which indicates that the prediction
corresponds almost perfectly with the observed values.

Fragmentation

To determine the effect of fragmentation, the performance of reading a file that
was written under interference conditions needs to be measured. To do this, the
following micro-benchmark was used:

• Before each experiment, the operating system cache is cleared using a kernel
software option, and any hardware caches are cleared by reading 2 gigabytes
of unrelated data.

• Write N files in parallel, writing 1 gigabyte of data to each file.

• Read back the created files sequentially, averaging the read throughput.

This measures the value of Rfragmented
throughput for a particular level of fragmentation

created by using a given number of parallel writers. The number of parallel writers
N is once again varied between 1 and 8.

In order to find the fragmentation factor F needed for Equation (5.5), the
following formula has to be solved for F for values of N > 1:

NF−1 =
1

Rdisk ·Rfragmented
throughput

(5.24)

This gives a different value of F for each value of N , but the values were very
close together as seen in Table 5.3 so the average is a reasonable approximation.
Therefore, F = 1.74 for the environment described in Table 5.4.
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Writing streams Rfragmented
throughput (MB/s) F

2 235.75 1.69
3 176.786 1.7
4 139.751 1.72
5 116.17 1.74
6 98.656 1.75
7 89.174 1.74
8 78.7059 1.76

Table 5.3: Throughput of reading files created with interference during writing
and the corresponding fragmentation factors
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Figure 5.16: Measured and predicted read performance with fragmentation

This approximation was evaluated against the micro-benchmark by using the
determined value of F to predict the transfer time of the micro-benchmark using
the following equation derived from Equation (5.5):

Nstreams
F · Sread ·Rdisk (5.25)

Figure 5.16 shows the result of the comparison. The predicted value matches
the measured value very closely for each number of streams. Also shown in this
figure is what the predicted performance would be if fragmentation was not taken
into account. The difference between the two predictions gets very big for larger
number of streams used to create the files, so obviously fragmentation has a serious
impact on performance when it occurs.

For fragmentation in the shuffle phase, I must also determine the value of
F shuffle
threshold. To determine this, the micro-benchmark for shuffle I/O is re-executed

but using input files that were generated using varying numbers of parallel writers.
Figure 5.17 compares the prediction using Equation (5.23) (which does not account
for fragmentation) to the measured values with fragmentation created by using 4
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Figure 5.17: Measured and predicted shuffle I/O performance with fragmentation

System
CPU 2x quad-core Xeon E5530 2.4GHz
Memory 24GB

Storage (RAID)
Controller JCS VCRVAX-4F RAID
HBA QLogic QLE2462
Disks 10x Hitachi HDS721010CLA332

Table 5.4: Experimental environment

parallel writers. It can be seen that the transfer time begins to increase at around
8MB segment size, and this is confirmed by the results using other numbers of
parallel writers. Therefore:

F shuffle
threshold = 8388608 (5.26)

5.6 Experimental evaluation

I evaluated the model by running several workloads on a 10 node cluster using
Hadoop 0.20.203.0. Table 5.4 shows the hardware configuration of each node. I
obtained the parameters given in Table 5.1 for the hardware and for each work-
load using the methods given in Section 5.5. The workloads were then executed
normally, varying the number of map and reduce tasks per node between 1 and 8,
and the actual performance was compared to the predictions made by the model.

The map stage and reduce stage are evaluated separately because this provides
more interesting insights than just the overall job execution time. To facilitate
this, Hadoop was configured to delay reduce task scheduling until all map tasks
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Parameter Value
dfs.block.size 128 MB
dfs.replication 3
mapred.child.java.opts -Xmx2048M
mapred.map.tasks.speculative.execution false
mapred.reduce.tasks.speculative.execution false
mapred.reduce.parallel.copies 1
mapred.reduce.slowstart.completed.maps 1.0
mapreduce.tasktracker.outofband.heartbeat true

Table 5.5: Hadoop configuration

TeraSort WordCount PFP Growth PageRank

Data
size

Input 160 GB 40 GB 45 GB 120 GB
Intermediate 160 GB 100 MB 240 GB 370 GB
Output 160 GB 1 MB 10 MB 120 GB

Tasks
Map 640 400 701 1040
Reduce 80 80 80 80

CPU
usage

Map Low High High High
Reduce Low High High Medium

Block size 256 MB 128 MB 64 MB 128 MB
Combiner Yes No No No

Table 5.6: Workloads used in the evaluation

for a job are finished. I have verified that using background reduce tasks did not
affect the overall job execution time significantly for each of the jobs.

Table 5.5 gives the most important Hadoop configuration options. All other
options (except for URLs and storage directories, etc.) were left at their default.
Note that the DFS block size specified in Table 5.5 is used for the output of the
jobs; the block size of the input data for each workload is given in Table 5.6. For
the TeraSort workload, dfs.replication for the output is set to 1 by the job
itself.

5.6.1 Workloads

In order to evaluate the model, a number of representative data intensive work-
loads for MapReduce were needed. Jobs that deal with large amounts of data are
preferable, particularly if they also have a large amount of intermediate data.

Unfortunately there is no widely accepted benchmark for MapReduce. There
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have been some attempts to create standard benchmark suites for MapReduce such
as MRBench [KJH+08] and HiBench [HHD+10], but none have gained widespread
adoption. Therefore, I have chosen a set of workloads based on commonly used
application types.

To evaluate different scenarios for the model, the workloads were chosen such
that there is sufficient variety in the amount of CPU and I/O activity for each
of the phases from Figure 5.5 and Figure 5.6. One workload is I/O bound in all
phases, two are I/O bound in some phases but CPU bound in others, and one is
entirely CPU bound. I believe that this is a representative range of workloads for
MapReduce, and this covers the most important edge cases for the model.

Table 5.6 provides an overview of the workloads that were used and their
properties. TeraSort [Ter] was taken from HiBench [HHD+10] and is the most I/O
intensive of the evaluated jobs. This job performs no processing of its own besides
a custom trie-based total ordering partitioner, so most of the CPU costs are from
the MapReduce framework itself. A 160GB data size was used instead of the full
TeraSort workload, which is sufficient to observe significant I/O interference while
keeping processing time reasonable.

WordCount is a simple workload often used to explain MapReduce [DG08] and
included as a sample with Hadoop. It is representative of many text manipulation
and aggregation workloads in Hadoop. Because it uses a combiner for local ag-
gregation its intermediate data size is very small, the reduce tasks are very short,
and all processing is entirely CPU bound. The input data was generated using
Hadoop’s random-text-writer sample.

Parallel FP Growth [LWZ+08] is a frequent pattern mining algorithm for
MapReduce, an implementation of which is provided in Mahout [Apac]. How-
ever, due to quality issues with this implementation the custom implementation
from Chapter 4 is used instead. The input data is a synthetically generated
database [AS94] with 800 million transactions, 100,000 unique items and an av-
erage transaction length of 10 items. The Parallel FP Growth workload consists
of three jobs; the model works was confirmed to work on all three, but only the
second job—which runs the actual PFP algorithm—is data intensive. The first
job is essentially equal to WordCount, and the third job is very short and pro-
cesses very little data. Therefore, only the second job is shown here. Although
this job has very high CPU usage in its map and reduce phases, the large size of
the intermediate data means it still performs a lot of I/O in the other phases of
the tasks.

The well-known PageRank [PBMW99, Cas09] algorithm is part of the HiBench
benchmark suite, and the implementation was taken from a test case in Smart-
Frog [Sma]. The input data is a link graph obtained from crawling the web in
2006 [CTK09]. Like Parallel FP Growth, PageRank consists of multiple jobs. It
also iterates several times over the data. The UpdateRanks job is the most data



5.6 Experimental evaluation 104

intensive, so only the results of the first iteration of that job are shown here (the
model was verified to work on the other jobs as well). This job has high CPU
usage in the map and reduce phases, but also very large intermediate data.

5.6.2 Results

To evaluate the model for the workloads, I compare the following values:

Model The execution time of the map or reduce stage as predicted by the I/O
interference model described in Section 5.5.

Actual The actual execution time of the map or reduce stage measured by exe-
cuting the workload with the specified number of parallel tasks on the cluster
from Table 5.4.

Linear scalability A naive model that assumes that tasks can scale linearly when
the number of tasks is increased. It takes the time predicted by the I/O
interference model for one slot, and divides it by the number of slots. This is
in practice what some of the existing MapReduce performance models (such
as [Her10]) do.

Model (bandwidth only) A simple I/O model that accounts for limited band-
width but not for any other factors. This model takes the time predicted
for 1 slot, and then increases I/O costs using Equation (5.3) and (5.4) to
account for the bandwidth being split between tasks. Pattern specific costs
(for the shuffle phase), hardware specific interference (fi), and fragmentation
costs are not applied, so this comparison shows how much those additional
factors impact the result.

Model (no fragmentation) A modification of the I/O interference model that
ignores intermediate file fragmentation. Instead of using Equation (5.5)
to account for fragmentation, this version of the model simply uses Equa-
tion (5.3) for those phases. This is only applied for the reduce stage because
no phase in the map stage uses fragmentation.

For each of the workloads two images are shown. The first shows the compar-
ison between the the actual execution and the various estimations listed above.
Note that some of the estimation errors may appear inflated because of the round-
ing that occurs for the shutdown phase; an estimation error of 0.1 seconds can
appear as a difference of 3 seconds per task if it happens to cause the rounding to
change.

The second figure shows the predicted CPU and I/O cost for each phase in
the tasks for the different numbers of parallel tasks. This is not compared to the
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Figure 5.18: Comparison of model prediction and actual execution time (TeraSort)

actual values because accurately measuring I/O costs per phase is not possible,
as explained in Section 5.4. The I/O costs are shown as predicted by the I/O
interference model, the bandwidth only model, and the model without fragmen-
tation. The linear scalability model is omitted from this graph to reduce clutter;
the predictions for linear scalability for any number of slots always match the I/O
interference model predictions for 1 slot.

For each workload, the model was able to estimate the effect of I/O interference
to within 5-10% of the execution time of actual execution, and indicate where the
I/O interference occurs even for workloads that were CPU intensive in some parts.

TeraSort

Figure 5.18a shows that there is a difference of 63% between the actual execution
time and the one predicted by the naive linear scalability model for map tasks of
the TeraSort when running 8 tasks in parallel. For reduce tasks, that difference is
even bigger at 77% when running 8 tasks in parallel. This clearly demonstrates the
importance of factoring in I/O interference in the prediction. The I/O interference
model is able to correctly predict the changes in the execution time to within 5%
at 8 parallel tasks for the map stage and 6% at 8 parallel tasks for the reduce
stage. Note that it is the prediction without accounting for fragmentation that is
more accurate; this is further discussed in Section 5.6.3.

Figure 5.19a shows the effect of interference on the map tasks for TeraSort. The
spill and merge phases become I/O bound when 3 or more tasks are executed in
parallel. Although the read/map/collect phase remains mostly CPU bound (which
is primarily due to the inefficient input format parsing used by this workload; this
is an issue with the workload’s implementation, not Hadoop), it is clear that at
higher number of parallel tasks the spill and merge phases become significantly
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Figure 5.19: Predicted CPU and I/O cost of each phase (TeraSort)

longer than the read/map/reduce phase and dominate the task’s execution time.

For the reduce tasks, all phases become I/O bound with more than 3 parallel
tasks as seen in Figure 5.19b. The shuffle phase in particular starts to dominate
execution time at higher numbers of slots, which is a common occurrence for tasks
with very large intermediate data sizes in my experience.

When looking at the bandwidth only model, for the map stage it appears to
be identical to the I/O interference model in Figure 5.18a, except at 6 slots where
a small difference is show. The only extra interference beyond splitting the band-
width for map tasks is the hardware specific interference function, fi, and as shown
in Section 5.5.4 that value is not very large for this particular environment. How-
ever, on other hardware environments—particularly systems with a single regular
hard disk—there can be a considerable amount of interference due to seek costs
introduced when the hardware needs to read multiple streams, in which case fi
will be much more complex and there will be a larger difference between the I/O
interference model and the bandwidth only model than is the case here. Note
that there is actually a small difference between the two models, as seen in Fig-
ure 5.19a. However, due to the rounding of task times to account for the shutdown
phase, that difference is only visible in Figure 5.18a when it causes a difference in
rounding, as is the case for 6 slots.

Figure 5.18b shows that for reduce tasks the bandwidth only model significantly
underestimates the execution time, with a 55% error at 8 slots. This is because
it does not account for the pattern-specific costs of the shuffle phase, which make
up the bulk of that phase’s I/O cost because of the large number of segments in
this workload. This can also be seen in Figure 5.19b, which clearly shows how
the bandwidth only approach predicts a much too low cost for the shuffle phase.
There is also a difference in the I/O cost prediction for the read/reduce/write
phase, which is due to fragmentation; the bandwidth only model is very close to
the prediction without fragmentation in this case because the extra cost of fi is
small for this environment, same as for the map stage.
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Figure 5.20: Comparison of model prediction and actual execution time (Word-
Count)
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Figure 5.21: Predicted CPU and I/O cost of each phase (WordCount)

WordCount

WordCount is used in the experiment to see how the model handles CPU intensive
tasks. In the case of a purely CPU bound task that remains CPU bound for all
numbers of parallel tasks used in the prediction, the I/O interference model reverts
to making the same predictions as the naive linear scalability model. This can be
seen in Figure 5.20a and Figure 5.20b, where the lines for Model, Model (bandwidth
only) and Linear scalability are identical because I/O interference is not predicted
to occur. For the reduce tasks, there is also no difference between Model and Model
(no fragmentation).

The actual execution time is very close to the model’s prediction, indicating
that assuming linear scalability is a viable approach for CPU intensive MapReduce
workloads. Figure 5.20a shows a small difference between Actual and Model, which
is likely caused by memory or CPU cache contention. However, the effect of this
kind of interference is much smaller than the effects of I/O interference observed in
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Figure 5.22: Comparison of model prediction and actual execution time (Parallel
FP Growth)

the other workloads in this experiment. Because of its small effect, ignoring these
types of interference does not lead to the same kinds of large prediction errors that
ignoring I/O interference does.

For the reduce tasks, there is some fluctuation in the value of Actual, which
is caused by small variations in CPU load due to environmental factors. The
reduce tasks of WordCount are extremely short and most of their execution time
is framework overhead rather than actual processing, somewhat exaggerating these
fluctuations. Nonetheless, Actual and Model are still very close in all cases.

The CPU intensive nature of the workload can also be observed in Figure 5.21a
and Figure 5.21b, where the CPU cost is larger than the predicted I/O cost in all
cases. Thanks to the use of a combiner, the intermediate data is very small, and
so is the output data. As a result, I/O costs are almost invisible except for the
cost of reading the input data in the read/map/collect phase. Because of the low
amount of I/O, there is also virtually no difference between the different I/O cost
estimations.

Parallel FP Growth

Parallel FP Growth has CPU intensive map and reduce functions, but also very
large intermediate data so I/O interference is expected to occur. Figure 5.22a
shows a 22% percent difference between the I/O interference model prediction and
the prediction of the naive linear scalability model when 8 parallel tasks are used.
While this is clearly less difference than for TeraSort, it indicates that despite the
CPU intensive nature of the map function, I/O interference will stay play a role for
the map tasks. The model accurately estimates the actual execution time for the
map tasks to within 11% when using 8 parallel tasks, indicating that the model
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Figure 5.23: Predicted CPU and I/O cost of each phase (Parallel FP Growth)

can handle this type of mixed CPU and I/O workload. As with TeraSort, the
bandwidth only model works for the map stage because the contribution of fi is
small on this environment.

The reason for the interference can be seen in Figure 5.23a, which shows that
despite the high CPU in the read/map/collect phase, I/O interference is still pre-
dicted to affect the execution time of the spill and merge phases when 4 or more
parallel tasks are used.

For reduce tasks, Figure 5.22b shows a 59% percent difference between the I/O
interference model prediction and the naive linear scalability model at 8 parallel
tasks, significantly more than for the map tasks. Once again, the model prediction
is very accurate, to within 8% at 8 parallel tasks. The bandwidth only model
underestimates the performance by 52% at 8 parallel tasks because it does not
correctly account for the shuffle phase costs; this is the same phenomenon that
was observed for TeraSort.

Figure 5.23b clearly shows why the reduce tasks are more I/O bound, as the
shuffle phase starts to dominate the execution time due to the large amount of
intermediate data despite the high CPU usage in the read/reduce/write phase. As
with TeraSort, the I/O cost estimation for the shuffle phase made by the bandwidth
only model is much too low. Note that for the read/reduce/write phase it makes
no difference whether intermediate file fragmentation is considered in this case
because that phase is CPU bound regardless, primarily because the output data
size is rather small.

PageRank

PageRank is similar to Parallel FP Growth because it has a similarly CPU intensive
map and reduce function but also very large intermediate data. Unlike Parallel
FP Growth, it also has very large output data.

Figure 5.24a shows a difference of 34% between the I/O interference model
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Figure 5.24: Comparison of model prediction and actual execution time (PageR-
ank)
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Figure 5.25: Predicted CPU and I/O cost of each phase (PageRank)

prediction and the naive linear scalability model prediction when using 8 parallel
tasks. This is a slightly bigger difference than for Parallel FP Growth, because the
even larger intermediate data makes the spill and merge phases more I/O intensive
and the read/map/collect phase is relatively less CPU intensive, as can be be seen
in Figure 5.25a (although the CPU cost in Figure 5.25a and Figure 5.23a seems
similar, keep in mind that each map task for PageRank processes twice the amount
of data as the Parallel FP Growth map tasks). The model correctly estimates the
actual execution to within 5% when running 8 tasks in parallel. For the same
reasons as with TeraSort and Parallel FP Growth, there is no significant difference
between the I/O interference model and the bandwidth only model.

Figure 5.24b shows that the difference between the I/O interference model and
the naive linear scalability model is 64% when using 8 parallel tasks, again slightly
bigger than for Parallel FP Growth. The model correctly estimates this value
to within 6% at 8 parallel tasks. Figure 5.25b shows that unlike with Parallel
FP Growth, the read/reduce/write phase is predicted to become I/O bound at



5.6 Experimental evaluation 111

6 or more slots if fragmentation is applied due to the larger size of the output
data and slightly lower CPU usage of the reduce function. The bandwidth only
model underestimates the costs of the shuffle phase, with a 56% estimation error
in Figure 5.24b at 8 slots. This is again for the same reasons as for TeraSort and
Parallel FP Growth.

Although there is a difference between the model prediction with and without
accounting for fragmentation, it is not significant enough to determine which of
the values is correct in this case.

5.6.3 Fragmentation

For TeraSort’s reduce tasks there is a significant difference between Model and
Model (no fragmentation) in Figure 5.18b, and Model (no fragmentation) is closer
to the actual measured execution time. When fragmentation is included, the
total execution time for the workload is overestimated by 30% for 8 parallel tasks.
Additionally, the model predicts a performance decrease when more than 3 parallel
tasks are used which is not observed in the actual execution time.

The prediction of the effect of fragmentation is based on the expected number of
parallel writers during those steps in the process when the relevant intermediate
files are written, in this case the reduce task merge phase. What I observed
in this case is that the shuffle phase suffered very large variability, with some
tasks progressing much faster than others. As a result, not all tasks reached the
threshold level for the shuffle memory buffer at the same time, and did not perform
background merges at the same time. As a result, the actual number of parallel
writers for those intermediate files was fewer than expected.

However, this is not always the case. In other circumstances I have observed a
significant effect from fragmentation. One such case is when TeraSort is executed
on only one node (the data size is decreased in accordance with the number of
nodes, as is the number of reduce tasks; on one node, 16 gigabytes of data and
8 reduce tasks were used so the amount of data processed per reduce task is the
same as in the experiment with 10 nodes; however, because the number of map and
reduce tasks is decreased, the shuffle segment size is larger). When only one node is
used, the shuffle phase proceeds in a much more predictable fashion thanks to the
lower number of segments and their larger size, and most tasks end up performing
background merges at the same time.

Figure 5.26 shows the results obtained from running this experiment. In this
case the model prediction including fragmentation in Figure 5.26b correctly esti-
mates the performance to within 13% for 8 parallel tasks, while Model (no frag-
mentation) underestimates the execution time by 34%. The actual execution times
also demonstrate the predicted decrease in performance when more than 3 par-
allel tasks are used. While the actual value drops below the prediction for more
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Figure 5.26: Comparison of model prediction and actual execution time (TeraSort
on 1 node)
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Figure 5.27: Predicted CPU and I/O cost of each phase (TeraSort on 1 node)

than 4 slots because increased task variance begins to affect the fragmentation
levels again, the predicted trend is still fairly accurate and the model without
fragmentation is clearly incorrect in this case.

Figure 5.27b also shows an interesting thing here: due to the larger segment
size, the shuffle phase is expected to show fragmentation. This does happen in
practice as the prediction in Figure 5.26b would be less accurate if this was ignored
and fragmentation was only applied to the read/reduce/write phase. That frag-
mentation is responsible for this difference was further verified by inspecting the
actual intermediate files of this job, where I found they indeed showed the expected
levels of fragmentation with the accompanying decrease in read performance. The
larger segment size is also responsible for the smaller difference between the I/O
interference model without fragmentation and the bandwidth only model in this
experiment, as there are fewer segments so the additional I/O cost for the shuffle
phase is smaller.

Fragmentation can clearly have a very large impact on performance when it



5.7 Discussion 113

occurs, but it is difficult to know exactly when it will occur or when environmental
circumstances cause it to be avoided. One way to address this is to gather more
statistics about various workloads and configuration to determine what influences
the odds of fragmentation occurring.

5.7 Discussion

5.7.1 Applying model predictions for improved resource
utilization

The ultimate goal of this model is to improve resource utilization through improved
understanding of I/O interference. This model can help to achieve that by using
the information it provides to guide resource provisioning and improve schedul-
ing decisions on several levels such as static scheduling policy, mixed workload
scheduling, and dynamic task scheduling.

For all of the I/O intensive workloads in Section 5.6, there are clear diminishing
returns on increasing the number of parallel tasks per node. For these workloads,
there is usually a point beyond which there is no real benefit anymore.

• For TeraSort map tasks, Figure 5.18 shows that the predicted performance
increase when going from 5 parallel tasks to 8 parallel tasks is only 5%,
compared to the 67% increase going from 1 to 5 parallel tasks. Therefore,
running more than 5 parallel map tasks is not useful. For reduce tasks, the
predicted cut-off point is at 3 parallel tasks, as there is only a predicted per-
formance increase of 2% beyond that point (or a 10% performance decrease
if intermediate file fragmentation occurs).

• Since WordCount is CPU bound, there is no limit to the number of tasks;
linear scalability is predicted in Figure 5.20.

• Although Figure 5.22 predicts some interference for Parallel FP Growth map
tasks, the performance is very close to linear. Although the improvements
after 6 parallel tasks appear small, they are still 15% going to 8 parallel tasks.
Therefore, it could pay off to use 8 parallel tasks if there is no better usage for
those CPU cores. The reduce tasks also keep showing improvements because
of the CPU intensive nature of the reduce function, although again 6 tasks
could be used as the limit with only a 10% improvements from that point.

• With PageRank (Figure 5.24), going from 6 to 7 parallel map tasks is still
predicted to show 9% improvement, but from 7 to 8 tasks it is less than
2%. For the reduce tasks, going above 5 or 6 tasks is not very useful as
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the performance increase predicted is only 12% or 8% respectively. What’s
more, if intermediate file fragmentation occurs, performance could decrease
by 6% going from 6 to 8 parallel reduce tasks.

The predicted performance improvements (or decreases) for adding additional
parallel tasks can be used to guide provisioning decisions. When the pricing of
different instance types is taken into account the model can be used to predict the
price/performance trade-off between having larger instances running more tasks
in parallel, or larger numbers of small instances.

This information can also be used for scheduling a workload. Model predictions
could be utilized by the scheduler to limit the number of parallel tasks on a node
for a given workload, preferring to use additional nodes rather than additional
tasks on the same node when possible, improving overall performance.

This is particularly helpful when multiple workloads or task types are present
in the system at once. For example, the scheduler could decide to run 3 TeraSort
reduce tasks on a node and fill the remaining capacity of the node with Word-
Count map tasks or a limited number of Parallel FP Growth map tasks. Although
many MapReduce workloads are I/O bound, small CPU intensive workloads do
occur relatively frequently; for example, the Parallel FP Growth and PageRank
workloads consist of multiple jobs; some of the other jobs in those workloads (not
shown here) have highly CPU intensive characteristics not dissimilar to Word-
Count, so they could be mixed with I/O intensive jobs from other workloads to
more efficiently use a node’s resources.

Of course, in order to accurately decide how to mix different kinds of tasks
from different workloads the model needs to be extended to predict the interference
effects of heterogeneous tasks. This is part of the future work for this research.

The model can also be used for more dynamic scheduling decisions. When a
new task must be scheduled on a node, information about the currently active
tasks and the I/O load of the node will allow an estimation of the performance
impact of possible new tasks. This can also benefit from the per-phase estimations
provided by the model. For example, Figure 5.22b shows that it is only really
the shuffle phase that is I/O intensive for Parallel FP Growth reduce tasks. The
scheduler can therefore decide to run another I/O intensive task on a node that
is running Parallel FP Growth reduce tasks, as long as those tasks have already
finished their shuffle phase. Predictions at this level are necessarily less accurate
due to variability between the tasks, but it is likely that using heuristics derived
from the model to guide scheduling in this way can still offer a significant benefit.

Although scheduling in the current version of Hadoop is based on slots and
does not take resources into account, the current alpha version of Hadoop (0.23)
revises the MapReduce architecture significantly to use a resource-aware scheduling
approach, eliminating the notion of slots. This system, called YARN, only supports
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memory in the first version, but this model could be used to add I/O support to
the YARN scheduler.

5.7.2 I/O interference in other applications

The problem of I/O interference does not just affect MapReduce, but is a problem
for all data intensive applications. The model presented in this paper is tailored for
MapReduce, but the approach itself can apply to other data intensive applications.
My method breaks down a complex workload into smaller pieces (for MapReduce,
these were tasks and phases; for other applications, it can be derived for example
from database logs), models the I/O behavior of each part separately, and uses
an application model to combine the parts and make statements about the whole
application. Once the I/O behavior of an application is known, my approach for
determining the impact of interference would be applicable to those applications
as well.

5.8 Conclusion

In this chapter, I investigated the effects of I/O interference on MapReduce appli-
cations. In particular, I focused on the issues that occur when multiple tasks are
running in parallel on a single node in order to try and take advantage of multi-
ple CPU cores in those nodes. These tasks need to contend for the same limited
storage I/O resources, leading to interference.

In order to enable better understanding and mitigation of I/O interference,
I proposed a cost model that is able to predict the effect of I/O interference on
the performance of MapReduce workloads when the number of parallel tasks per
node is increased. This model uses knowledge about the structure of MapReduce
and the I/O patterns it uses to make performance predictions about MapReduce
workloads. Interference is handled by hardware specific interference functions,
which are derived from micro-benchmarks that measure the performance of the
hardware under contention. The combination of the MapReduce and hardware
interference models is used to predict how the performance of a workload changes
when additional parallel tasks cause interference.

I evaluated the I/O interference model against several representative workloads
on a real cluster environment, using a mix of workloads that are either heavily
I/O intensive, CPU intensive, or show both CPU and I/O intensive behavior in
different parts of the workload. In all cases, the model is able to predict the actual
performance of the workload to within 10%, and provides detailed information
about which parts of the workload are CPU or I/O intensive, and by how much.
It performance much better than a naive linear scalability approach, and also
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shows significant benefits compared to only modeling bandwidth, particularly for
phases that do not perform sequential I/O (such as the shuffle phase) or when
fragmentation occurs. Although the hardware specific interference function did
not create a large difference on the environment used here, it is likely that it will
have a larger impact on different environments.

The information provided by this workload can be used to guide provisioning
and scheduling decisions leading to improved resource utilization, which translates
into faster execution times and lower costs.

Although the model in this chapter was made for MapReduce, the approach of
this model can likely also be applied to other data intensive cloud applications.



Chapter 6

Mariom: MapReduce I/O
interference model framework

6.1 Introduction

As covered in Chapter 5, I/O interference affects the performance of many data in-
tensive applications. As multi-core systems become more and more common, inter-
ference between applications running on those systems is an increasingly common
problem. Therefore, distributed data processing platforms such as MapReduce
could benefit greatly from having insights into the I/O behavior of applications to
improve scheduling and provisioning decisions.

Provisioning resources for data intensive processing is a complex issue, as there
are many factors that can affect the performance of an application. Traditionally
the provisioning of compute resources is left up to IT professionals employed by
large corporations with sufficient funds to deploy their own infrastructure. These
professionals would be experts on distributed systems and are able to make at least
an informed decisions based on their previous experience even if they do not know
the exact requirements of the workloads they are dealing with. Yet most cloud
computing environments move these kinds of decisions to the—often layman—end
users. These users have to make decisions about how many nodes of what type to
provision. Users are often left merely guessing what configuration is best suited for
their workloads and performance requirements, and which options offer the best
price/performance trade-off.

Scheduling is the other side of the problem. Once a cluster is provisioned, it is
not necessarily straight forward to utilize the provisioned resources efficiently to
gain maximum performance from the resources available to the application. The
traditional MapReduce scheduler used by Hadoop simply attempts to schedule as
many tasks as possible on as many nodes as possible, with the maximum number
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of map or reduce tasks per node defined by the number of slots, which is a system
wide parameter used for all workloads; the only consideration for efficiency during
scheduling is the data locality of map tasks. In the current under development
version of Hadoop (Hadoop 0.23), this scheduler will be replaced by YARN, a
resource manager that does away with the notion of slots and instead allocates
containers based on resource requests from the applications. However, in the first
version of YARN RAM will be the only supported resource type. Other alternative
schedulers for Hadoop typically focus on resource sharing between multiple con-
current workloads, attempting to ensure that one workload cannot starve another
of resources or that relative priority levels between the workloads can be enforced.

As the results from Chapter 5 clearly demonstrate, for many applications it
is often not a good idea to keep adding additional tasks to a node up to the
limit of the memory size or number of CPUs, as this often does not improve
performance by much or can even degrade performance due to I/O interference.
However, without knowledge about the I/O behavior of applications and the way
this behavior changes under interference it is not possible for a scheduler to decide
an optimal distribution of tasks among the available resources.

In Chapter 5, I introduced a performance model for MapReduce that is able
to predict the effect of I/O interference on an application’s performance. In this
chapter, I will describe Mariom, a framework and toolset for applying this model
to MapReduce workloads.

There are already a number of tools for automating Hadoop provisioning, as
well as a number of works that attempt to improve Hadoop scheduling. Mariom,
in its current incarnation, does not provide either; instead, it focuses on providing
a method to utilize the MapReduce I/O interference model in such a way that it
could be easily integrated in these kinds of provisioning or scheduling solutions.

6.2 Related work

Improved scheduling for MapReduce is an active area of research, as the per-
formance of MapReduce applications is largely dependent on the effectiveness
of the scheduler. Several approaches focus on scheduling in heterogeneous en-
vironments [ZKJ+08, TZHZ09, PCB+10, CZG+10, YYH11, FDHG12]. Polo et
al. [PCC+11] provide a resource aware approach for dynamically altering the num-
ber of slots per node depending on the resource requirements of the applications.

There are not many automatic provisioning tools for MapReduce. One of them
is ARIA [VCC11a, VCC11b], which aims to automate allocation of resources to
MapReduce applications so that user-specified Service Level Objectives can be
met. The Starfish Elastisizer [HDB11] focuses on relative performance models
to predict how a workload will perform when moved from one environment to
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another, allowing it to optimize the provisioning and Hadoop configuration of
the new environment. AROMA [LZ12] similarly enables automatic provisioning
based on performance goals, using a two-phase machine learning and optimization
framework.

My work does not compete with these existing solutions; rather, it is comple-
mentary. Mariom aims to provide I/O interference predictions for a workload and
could be integrated into other scheduling or provisioning tools to provide additional
information to improve their decision making.

6.3 Design overview

The primary goals when creating Mariom were as follows:

• Provide a method of extracting workload parameters from arbitrary MapRe-
duce workloads, even if they were not executed under ideal circumstances.
This makes it possible to deploy Mariom in a production Hadoop cluster and
derive workload parameters from ordinary job executions without requiring
special workload executions with altered settings.

• Provide the ability to adjust workload parameters based on the workload size
and Hadoop configuration. This allows one to derive workload parameters
by running only a sample of a complete workload rather than requiring the
entire workload to be executed, and also allows the parameters to be used
for future executions of that workload with different data sizes and different
configuration settings (such as the number of tasks).

• Provide the ability to make performance predictions based on the I/O inter-
ference model.

• Implement all parts as reusable Java classes to allow integration of Mar-
iom into more comprehensive scheduling or provisioning solutions, including
possibly Hadoop itself.

• Implement the hardware specific parts of the model as plug-ins, so that they
can be replaced if Mariom is used on different hardware environments.

• Provide the tools needed to allow derivation of the hardware model for an
environment.

Figure 6.1 shows a schematic overview of the design of the Mariom MapReduce
I/O interference model framework and toolset. It contains the following compo-
nents:
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Figure 6.1: Components of the Mariom framework

• The workload analyzer derives workload parameters from a given job exe-
cution. It includes a modified version of Hadoop that records the necessary
performance information to derive the parameters.

• The performance predictor makes predictions about a workload given its
parameters and the current system configuration. It utilizes a data flow
model to adjust the parameters based on changes to the input data and
Hadoop configuration, and a hardware interference model to predict the I/O
performance under interference.

• The micro-benchmark suite provides all the tools necessary to execute the
micro-benchmarks from which to derive the hardware parameters and the
hardware specific interference function.

Currently, a command line interface is provided to allow for workload analysis
and model predictions. This allows a user to manually investigate the perfor-
mance of a workload under the desired circumstances. As indicated earlier, all
components are implemented as Java classes so they can be integrated into full
blown provisioning or scheduling systems; the command line interface is simply a
convenience provided in the mean time.

The following sections will describe each of the components of Mariom in detail.

6.4 Workload analyzer

The workload analyzer is the component of Mariom concerned with deriving the
model parameters listed in Table 5.1. In particular, it must derive the data sizes
(Sread and Swrite) of each phase as well as the CPU cost (CPUphase). It also collects
a number of additional parameters, particularly the number of input and output
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records of several of the phases, that are required to support the data flow model
described in Section 6.5.1.

Not all of the parameters required for the I/O performance model are normally
recorded by Hadoop. It is therefore necessary to hook certain parts of the Hadoop
MapReduce framework to support extraction of this information. There are several
approaches that could be utilized for this:

• Require workloads to record their own parameters. This is not a desirable
solution because it requires alteration of user code for use with the tool.
Additionally, user code in the workloads cannot capture statistics about all
the parts of the MapReduce framework that are required.

• Use a profiler to derive statistics during execution. This is in many ways
the ideal approach, as it requires no modification of existing code. However,
while it is easy to profile tasks (this is supported by Hadoop), in practice
it turns out some statistics from the Datanode and Tasktracker are also re-
quired and it is not so simple to attach a profiler to these processes, especially
in a secured environment. Additionally, profilers often have unacceptable
levels of overhead that can distort the result.

• Modify Hadoop to record the additional statistics required. While this re-
quires users to run a specialized version of Hadoop, it is the only solution that
can capture all the required information and does not have any significant
overhead.

Although each solution has its own advantages and disadvantages, I decided to
use a modified version of Hadoop as this provides the most accurate information.
The modifications to Hadoop are described in Section 6.4.1, and the methods to
extract the information is described in Section 6.4.2.

6.4.1 Instrumented Hadoop

Instrumented Hadoop is a modification of the stock Hadoop 0.20.203.0 distribution
that records a number of additional parameters about each task and task phase
necessary for the model. This is mostly CPU times, but in a few places it was
necessary to record additional data sizes and record counts that could not be
derived from existing log files or job counters.

All information is recorded in the task log files for later analysis. The exception
is the information captured in the Datanode and Tasktracker, which is stored in
their own log files.

In order to allow recording of these parameters without requiring special con-
figuration or circumstances during the execution, real CPU times per thread are
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recorded rather than elapsed time. Elapsed time is used by some other tools (in-
cluding Starfish), but this has the problem that it cannot distinguished between
CPU and I/O time. Elapsed time is therefore only an accurate measure of CPU
time if there is no interference from any other tasks (either CPU or I/O interfer-
ence) and the workload is entirely CPU bound. In practice, this means that you
must utilize only one slot and ensure that Hadoop cannot use more than one CPU
(because otherwise multi-threading in some parts (particularly between the task
and data server) may lead to under-estimation of the CPU costs. Additionally, it
is necessary to ensure that the read/map/collect phases do not overlap with the
sort and spill phases (which are executed in a background thread) so that they
do not affect each other’s elapsed time, and the same is true for the background
merge phases during the shuffle phase. Tools such as Starfish do not actually
ensure that this is the case, so depending on the circumstances the measured costs
can be highly inaccurate.

Using real CPU times has its own caveats. Measuring the CPU time of a thread
has more overhead than simply keeping a timer, and therefore cannot always be
done at the desired levels of granularity. For example, the read, map and collect
phases are interleaved, so separating their CPU times would require making a
measurement for every record read and every record sent to the output. This
is prohibitively expensive—it can easily increase the total execution time by an
order of magnitude—and the Linux kernel does not keep CPU time statistics at
that level of accuracy anyway so the results would not be correct.

While the I/O interference model generally does not require to know each
individual CPU time in that level of detail, the data flow model in Section 6.5.1
does for a few cases. In order to handle these, I also capture elapsed time and use
the relative times to divide the CPU time. This is not a 100% accurate approach,
but it is not possible to improve on this with current operating system limitations.

Another limitation is that some CPU time (such as time spent in the garbage
collector and other internal JVM threads) cannot be captured. However, I found
this does not affect the accuracy by a significant amount.

Below it is explained for each phase from Figure 5.5 and Figure 5.6 what
information is recorded and what changes were made to Hadoop to accommodate
this. Most of the changes are relatively small, so it should not be complicated to
port these changes to other versions of Hadoop.

The map task read/map/collect phases

The only additional information that needs to be recorded for these phases is the
CPU time, and the elapsed times of each individual phase as described above.

Hadoop 0.20 supports two different APIs for map and reduce functions, referred
to simply as the old and new API. These both use different code paths and different
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classes, all of which need to be modified to support both APIs.
In order to record the CPU time across all three phases, the functions respon-

sible for running the old and new version respectively both take a thread CPU
measurement before and after map execution. They also record the start and end
times in the log, from which the total elapsed time of all three phases can be de-
rived. The input record reader takes timestamps for every record read, providing
the elapsed time of the read phase. The output collectors for both APIs do the
same for each collected record, providing the elapsed time of the collect phase.
The elapsed time of the map phase is the difference between the total elapsed time
and the read and collect times.

The read phase reads data from the Hadoop DFS, and some CPU costs are
incurred in the Dataserver. Because checksum calculation happens in the client
process, the CPU costs on the Datanode are not very high, but they are also not
so small that they can be ignored.

In order to capture this information, the Datanode was modified to take CPU
time measurements during the handling of a HDFS_READ request. Since only one
thread is used for each client, and that thread does no other operations during
the handling of that client, this is relatively straight forward. These CPU times
are recorded in the Datanode’s ClientTrace log. Because MapReduce tasks use
their task ID as the DFS client ID (which is recorded in the ClientTrace log), it is
possible to determine which log entries correspond to which tasks.

The map task sort phase

Two additional pieces of information must be recorded here: the number of records
sorted during each spill, and the CPU time of the sorting operation. The number
of records is required to calculate the CPU cost per record which is necessary for
the data flow model.

Sorting happens on the spill thread, so it is a simple matter to take a thread
CPU time measurement before and after the sort, and record that time along with
the number of records in the task log file. The sort phase does not distinguish
between the old and new API so this change only had to be made in one place.

The map task spill phase

For the spill phase the number of output records of the spill (which may be different
than the number of input records if a combiner is used) must be recorded, the CPU
time of the spill operation, and the elapsed time of the combiner. As before, the
record numbers and elapsed times are only necessary for the data flow model.

CPU time measurements are added before and after each spill, and the value
is recorded in the task log file. To get the elapsed time for the combiner, the
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total elapsed time of the spill is recorded, and the input record reader and output
collector of the combiner are hooked to record the time spent reading input and
writing output; the difference between the total time and the read and write times
is the elapsed time for the combiner. The output collector of the combiner also
provides the number of output records for the spill. The invocation of the combiner
is different depending on whether the old or new API was used, so the input record
reader and output collector of both APIs had to be altered.

The map task merge phase

Because the merge phase can have multiple passes, the number of bytes read and
written can be larger than the output data size of the map task. Because the merge
phase can also invoke the combiner on the final pass, the number of output records
and the output size is once again possibly smaller. Because the Hadoop counters
do not distinguish spill and merge or the various merge passes, this information
must be recorded separately.

For each merge pass, the amount of data processed (which is both read and
written) is recorded. For the final merge pass the output size and number of
records are separately recorded to account for a possible combiner. As with the
spill phase, the elapsed time of the combiner is also recorded in a similar fashion
(the same modifications are re-used here). CPU time is measured by taking thread
time measurements before and after the merge.

The reduce task shuffle phase

The shuffle phase uses several different threads: one thread to check which map
task outputs are available for download, one thread to schedule the fetches, and
one or more threads to download the segments. CPU time measurements are
added to each thread, and the values are recorded in the task log file.

The shuffle phase downloads data from the Tasktrackers of other nodes, and
some CPU utilization takes place inside the map output server in the Tasktracker.
CPU time measurements were added to this server, and those CPU times are
recorded in the Tasktracker’s ClientTrace log. The reduce task ID is also added
to this log entry so it is possible to determine which costs belong to which task.

The reduce task merge phases

There are three merge phases in a reduce task: the background memory-to-disk
merge during shuffling, the background disk-to-disk merge during shuffling, and
the memory purge and intermediate merge passes that happen after shuffle is
complete and before the reduce function is invoked.
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CPU time measurements are added to each of these, with the values recorded
in the task log file. In addition, the number of records and data size of each
background merge is recorded. For the background memory-to-disk merge, the
number of output records is recorded separately because the combiner can be
invoked, and the elapsed time for the combiner is also recorded in the same way as
done for the map tasks. For the intermediate merge passes after the shuffle phase,
the modifications made to the Merger class for the map task merge phase already
record the data sizes of each pass.

The reduce task read/reduce/write phases

These phases are handled very similarly to the map task read/map/collect phases.
CPU time measurement is done for the three phases combined, and elapsed times
are determined by measuring total elapsed time, input reading time and output
writing time. Once again it is necessary to hook different classes for the old and
new API.

As with reading, writing to the Hadoop DFS incurs CPU cost on the Datanode.
Because the final Datanode in the replication chain verifies the client computed
checksum, this CPU cost can be significant. The Datanode was modified to record
the thread CPU times of HDFS_WRITE operations and record it in the Datanode’s
ClientTrace log. Two threads are used for handling write requests; one thread
that receives the data (and if necessary, forwards it to the next replica), and one
thread that sends acknowledgments back to the client. Although most CPU time is
spent in the receiver thread, I still record the CPU time of both. As with reading,
MapReduce tasks use their task ID as the DFS client ID, making it possible to
determine which operations were done by which tasks.

6.4.2 Analyzer

After a job has been executed using the instrumented version of Hadoop, the work-
load analyzer can process the collected information to determine the parameters.

As input, the analyzer takes a job ID. It retrieves information (including
counter values) about this job from the Jobtracker, and then downloads and parses
all the task log files, Datanode log files, and Tasktracker log files relevant tot he
job.

Instead of a job ID you can also provide a job history file. This allows analysis
of jobs after they have been retired by the Jobtracker, or if the Jobtracker has
been restarted since the job was executed. In this case, counter values and other
job information is parsed from the history file. It is still required for all relevant
log files to be available on the cluster (Hadoop cleans up task log files after some
time, usually a few days).
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The parameters for each of the map task phases are extracted as follows:

Read/map/collect The number of bytes read is determined from the FileIn-
putFormat bytes read counter. The input and output record counts are
determined from the map input records and map output records counters.
The output data size is determined from the map output bytes counter. The
CPU and elapsed times are parsed from the task log file and Datanode log
files.

Sort The number of records and CPU time are parsed from the task log file.

Spill The number of output records, bytes written, CPU times and elapsed times
are determined by parsing the task log file. The spilled records counter
cannot be used for this purpose because it includes all records written by the
spill and merge phases (including intermediate merge passes).

Merge The number of bytes read, number of bytes written, output size, output
records and CPU and elapsed times are parsed from the task log file. The
total number of records merged in all passes is determined by subtracting the
number of output records from the spill phase from the value of the spilled
records counter.

For the reduce tasks, it is as follows:

Shuffle The number of bytes read and written is determined from the task log
file (this is information already recorded by stock Hadoop). CPU times are
determined by parsing the task log file and the Tasktracker log files.

Merge For each type of merge separately, the bytes read, bytes written, output
size (may be different because of combiner), merged records, output records,
CPU time and elapsed time are parsed from the task log file. The memory-to-
disk merge, disk-to-disk merge, and memory purge and intermediate merge
passes are kept separately to improve calculations done by the data flow
model.

Read/reduce/write The number of input records and output records are deter-
mined from the reduce input records and reduce output records counters. The
number of bytes read is parsed from the task log file, and the number of bytes
written is determined by the FileOutputFormat bytes written counter. The
CPU times and elapsed times are parsed from the task log file and Datanode
log files.
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Nmap
tasks 640

Init phase
CPUphase 2.113
Sread 0
Swrite 0

Read/map/collect phase
CPUphase 4.162
Sread 268435400
Swrite 0

Sort phase
CPUphase 2.377
Sread 0
Swrite 0

Spill phase
CPUphase 2.883
Sread 0
Swrite 273809388

Merge phase
CPUphase 5.122
Sread 327282240
Swrite 327282240

(a) Map tasks

N reduce
tasks 80

Init phase
CPUphase 3.446
Sread 0
Swrite 0

Shuffle phase
CPUphase 12.774
Sread 2190436704
Swrite 0

Merge phase
CPUphase 30.776
Sread 0
Swrite 2190433041

Read/reduce/write phase
CPUphase 49.502
Sread 2190432882
Swrite 2147483200

(b) Reduce tasks

Table 6.1: Sample workload parameters for TeraSort

This information is saved in a file, preserving the values for each task. Work-
load parameters are determined by averaging the values of the tasks. Tasks that
deviate too much from the average (determined by using the standard deviation)
are ignored to make sure that statistical outliers (such as very small tasks that
process the tail of the input files) don’t unduly affect the average.

Table 6.1 shows an example of the parameters collected by Mariom for the
TeraSort workload from Table 5.6 on the environment from Table 5.4. Only the
parameters for the I/O model are shown; the additional parameters collected for
the data flow model are omitted.
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Parameter Meaning

mariom.cache.task.percent

The per-task data size threshold below which
data is considered cached, as a percentage of the
node’s memory

mariom.cache.wave.percent

The per-wave data size threshold below which
data is considered cached, as a percentage of the
node’s memory

mariom.sync.write.task.percent

The per-task data size threshold above which
writes are considered synchronous, as a percent-
age of the node’s memory

mariom.sync.write.wave.percent

The per-wave data size threshold above which
writes are considered synchronous, as a percent-
age of the node’s memory

mariom.shuffle.cache.percent

The threshold of the total map output size
per node below which shuffle data is considered
cached, as a percentage of the node’s memory

mariom.cpus.per.node The number of CPU cores per node

mariom.node.memory The size of each node’s RAM

mariom.hardware.model
The name of the class implementing the hard-
ware model

mariom.data.model
The name of the class implementing the data
flow model

Table 6.2: Configuration settings for Mariom

6.5 Performance predictor

The performance predictor is the core part of Mariom. It takes as input the
workload parameters for a job and the current Hadoop configuration, and produces
cost predictions for each phase and an overall performance prediction for the tasks
and workload as described in Chapter 5.

If the input data size, number of map or reduce tasks, or some Hadoop config-
uration options (such as the spill buffer size or merge factor) has changed, Mariom
first uses a data flow model to adjust the workload parameters for the new settings.
Based on the parameters, it then predicts the performance using the method de-
scribed in Section 5.5 based on the specified number of nodes and parallel map
and reduce tasks per node. In order to calculate the effect of I/O interference, it
delegates to a hardware model that is specific to the targeted hardware environ-
ment.

The Mariom predictor has several configurable parameters which are listed
in Table 6.2 which affect the caching heuristics (see Section 5.5.2) and provide
some system parameters from Table 5.1 that cannot be determined from regular
Hadoop configuration settings or by querying the Jobtracker. It also allows the
user to specify the class names of the data flow model and hardware models.
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6.5.1 Data flow model

It is desirable to be able to adjust the workload parameters based on changes in
the input data, job configuration, or Hadoop configuration. This avoids having to
measure the workload again after every change, and allows workload parameters
to be determined by measuring only a sample of the workload rather than the
entire workload.

In order to allow such estimation, Mariom delegates to a data flow model to
adjust the parameters based on their original values from the measurement and the
new configuration settings. The data flow model is a plug-in; that is, an interface
is provided for the data flow model and any class implementing that interface
can be used as the data flow model. The interface has only a single method,
modifyParameters, which takes as input the original parameters and configuration
and the changed configuration, and provides as output the updated parameters.
Which class is used is specified using the mariom.data.model configuration option.

Mariom provides a default data flow model based on the approach described
in [Her10]. Based on the input data size and Hadoop configuration for a job, this
data flow model does the following:

• The input data size for each map task is estimated based on the total input
data size and the number of map tasks.

• The output data size and number of records of the map function is esti-
mated based on the selectivity of the map function in the original measured
workload.

• The number of spills is estimated based on the the size of the map output
data and the map output buffer size.

• The output data size and number of records of the spills is estimated based
on the selectivity of the combine function (if any).

• The number of merge passes is calculated based on the number of spills and
the maximum number of file inputs in each pass (the merge factor).

• The output data size of the merge phase is estimated based on the selectivity
of the combine function (if any).

• The input of each reduce task is calculated based on the total map task
output size and the number of reduce tasks.

• The number of background memory-to-disk merges during the shuffle phase
is calculated based on the number of input segments, the size of each segment,
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the size of the reduce input buffer, the merge threshold of the input buffer,
and the maximum number of in-memory segments for one merge pass.

• The number of background disk-to-disk merges during the shuffle phase is
calculated based on the number of segments stored on disk by either the
shuffle or memory merge phases, and the merge factor.

• The amount of segments evicted from memory after the shuffle phase is
calculated based on the number of remaining segments in memory and the
reduce phase input buffer limit.

• The number of intermediate merge passes before the reduce phase is calcu-
lated based on the number of on-disk segments and the merge factor.

• The input data size and number of records of the reduce function is calculated
based on the shuffle input data, the number of memory merges and the
selectivity of the combine function (memory merges apply the combiner; the
other reduce task merges do not).

• The output data size and number of records of the reduce function is calcu-
lated based on the selectivity of the reduce function.

The estimated CPU and I/O costs for each phase are calculated by the relative
change compared to the original measured workload. However, because the I/O
cost calculations of this model cannot account for interference, I only use the
cost calculations for the CPU costs; for I/O, only the changes in bytes read and
written are calculated and used for the further I/O calculations using the model
from Section 5.5.

Data flow model limitations

Although this data flow model is reasonably accurate in most cases, it does have
some limitations. These limitations are part of the original model and affect not
just Mariom, but also the original application of the model in the Starfish Elasti-
sizer [HDB11]. Mariom is therefore at least as accurate as Starfish in this regard,
and to my knowledge no better approximations currently exist. The data flow
model is a plug-in so it can easily be replaced in case better approaches are cre-
ated in the future. Some of the limitations of the current data flow model are
discussed below.

In order to handle changes in the selectivity of the map, combine or reduce
function, the data flow model must be able to distinguish the CPU costs of the
read, map and collect phases, the CPU costs of the combiner as part of the spill
phase, and the CPU costs of the read, reduce and write phases. Because of the way
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these phases interleave, this requires a separate measurement for every record in the
input and output. Unfortunately, the Linux kernel does not maintain thread CPU
times to that level of accuracy, and even if it did the overhead of doing that many
CPU time measurements is significant, often increasing the overall execution time
by an order of magnitude rendering the measurements highly inaccurate. I can
therefore only measure CPU time for the combined phases, not for the individual
component phases.

Starfish takes measurements using elapsed time only which can be done at
that level of granularity. However, elapsed time measurements can be inaccurate
if there was interference during measurement or if the workload is not CPU bound.
Due to this, I found the accuracy of Starfish severely lacking in situations where
I/O interference occurs.

To handle these situations, I collect durations as well as CPU time, and split
the CPU time based on the relative sizes of the durations of the component phases.
The accuracy of that is limited if the original measurement was not taken under
ideal conditions without interference, but there is no way to get more accurate
data with the current Linux kernel. Because predicting changes in the selectivity
requires detailed statistics about the input data and the map, combine and re-
duce functions, which are often not available in a MapReduce environment, this is
relatively rare scenario.

The data flow model also considers selectivity to be constant, which it may not
be depending on the functions involved. For example, for the WordCount workload
from Section 5.6.1 the output of the combine and reduce functions depends on the
number of unique words in the input, not the size of the input. However, without
detailed knowledge of the properties of the data and the functions involved, it is
not possible to make more accurate predictions regarding selectivity.

For most cost calculations, the data flow model assumes that costs change in
a linear fashion with regards to the number of input records. This is reasonable
in most cases, but for the map task sort phase the costs are O(n log n), where
n is the number of records in each spill. However, since records are sorted first
by partition and then by key, a decrease in the number of partitions increases
the number of comparisons where the key must be compared rather than just the
partition number. This data flow model accommodates this by saying sort costs
change according to O(n log(n

r
)), where r is the number of partitions, however my

experiments have shown this to not be entirely accurate. Since actual costs may
also be different depending on the actual keys in the input data, it is likely not
possible to get a really precise estimation of the sort costs if the number of records
or partitions changed. However, since the sort phase is often only a small part of
the overall costs of a task, this is not a major problem.

Similarly, the costs of the various merge phases in the map and reduce tasks
are roughly O(n log s), where n is the number of records and s the number of
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segments being merged. However, merging also includes reading input and output
and potentially running a combiner, all of which are actually linear in either the
input or output size. Since it is not possible to measure CPU time with sufficient
granularity to distinguish the costs of each of these steps, all of these are treated
linearly. Note that Starfish also treats merging as O(n), even though it does
distinguish those costs. Because the merge CPU costs are often not a large part
of the task time and merge phases are often I/O bound anyway (at which point
the precise CPU time is no longer relevant), this is not a large problem.

6.5.2 Hardware model

The hardware model is responsible for predicting I/O performance based on the
hardware parameters from Table 5.1, including the hardware specific interference
function. Because the hardware model is dependent on the target environment, it
is not a fixed part of Mariom. Instead, it is a plug-in that can easily be replaced
with different models for different environments.

For the hardware model, the interference function fi is split up into four parts:
synchronous and asynchronous read and write interference. This is done to ease
implementation for those environments in which some of the interference may
overlap with the CPU costs of a phase, and some interference may not (e.g. because
it takes place as the stream starts reading).

The hardware model interface specifies the following methods:

getAsyncReadInterference Calculates the read interference portion of fi that
may overlap with the CPU costs of the phase.

getAsyncWriteInterference Calculates the write interference portion of fi that
may overlap with the CPU costs of the phase.

getSyncReadInterference Calculates the read interference portion of fi that
may not overlap with the CPU costs of the phase.

getSyncWriteInterference Calculates the write interference portion of fi that
may not overlap with the CPU costs of the phase.

getRandomIoCost Gets the value of Crandom, the random I/O cost of each seg-
ment in the shuffle phase.

getFragmentationFactor Gets the value of F , the cost correction factor for
reading fragmented files.

getShuffleFragmentationFactor Gets the value of F for the shuffle phase. This
is treated separately because shuffle input files are created under different
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Parameter Meaning

mariom.hardware.read.throughput
The average read throughput of the I/O de-
vice (Rthroughput).

mariom.hardware.write.throughput
The average write throughput of the I/O
device (Wthroughput).

mariom.hardware.random.io.cost
The random I/O cost for each shuffle seg-
ment (Crandom).

mariom.hardware.fragmentation.factor The fragmentation factor (F ).

mariom.hardware.shuffle.

fragmentation.threshold

The minimum segment size before frag-
mentation is applied to the shuffle phase
(F shuffle

threshold).

Table 6.3: Configuration settings for the sample hardware model

conditions, so the hardware model may determine separately whether frag-
mentation should be applied depending on for example the value of F shuffle

threshold.

getReadCost Gets the basic read cost of a phase, without interference, based on
the number of bytes read and the value of Rdisk.

getWriteCost Gets the basic write cost of a phase, without interference, based
on the number of bytes written and the value of Wdisk.

The core MapReduce model in the predictor uses these functions to calculate
the costs for each of the I/O patterns described in Section 5.5.2.

Since the hardware model is specific for the hardware environment, one must
be implemented for each environment after the various parameters and functions
have been determined using the micro-benchmarks and the methods described in
Section 5.5.4. Once those functions and parameters are determined, it is very
straight forward to implement a hardware model class for that environment.

A sample hardware model is provided with Mariom for the hardware environ-
ment described in Table 5.4, using the parameters and functions derived for this
environment in Section 5.5.4.

The sample hardware model uses several configuration settings for the values
of some of the hardware parameters, which are listed in Table 6.3. This makes
it possible to utilize the sample data model class as a base class for a custom
data model, overriding only the interference functions and using the configuration
settings to adjust the value of the other parameters.

6.6 Micro-benchmark suite

The Mariom micro-benchmark suite provides the tools necessary to run the bench-
marks that are used to derive the parameters and interference functions of the
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hardware model. This collection of micro-benchmarks was used in Section 5.5.4 to
derive the hardware model for the environment described in Table 5.4.

While Mariom provides all the micro-benchmarks for deriving the hardware
model, it does not automatically derive the actual parameters or functions from
the result of the benchmarks. It is up to the user to interpret the result of the
benchmarks and derive the necessary information. For some values, such as the
basic read and write cost, this is relatively simple. For others, such as the interfer-
ence function, it is expected to be far more complex depending on the hardware
environment. Automatic derivation of hardware performance models is a complex
research topic and is outside the scope of this thesis.

The micro-benchmark suite consists of two parts: the I/O benchmark tool
that is able to perform the required I/O operations, and a series of scripts that
will invoke that tool to perform the necessary benchmarks.

6.6.1 I/O benchmark tool

The I/O benchmark tool is a custom-written C++ application that can perform
I/O operations related to the I/O patterns observed in MapReduce as described
in Section 5.4. It provides the basic functionality upon which the actual micro-
benchmarks for the I/O interference estimation are built.

The functions of the I/O benchmark tool are described below.

Read benchmark

The read benchmark will perform a sequential read of the specified input file or
block device. It will open the the specified file, read data from the file into a buffer,
and repeat this until end of file or the specified maximum size is reached. The
buffer size is specified by the user, and reading can optionally start at an offset into
the file. The file will be opened using the O_RDONLY flag. Optionally the O_DIRECT

flag can be used as well to bypass the page cache.

While reading, a timestamp is recorded at specified intervals (intervals are
specified in terms of the amount of data read), with at most one timestamp for
every buffer read. Optionally, system and process CPU usage can be recorded as
well (this is not recommended for small intervals, as the overhead of measuring
this often is significant). At the end of the benchmarks all timestamps are written
to a file to allow creation of a graph showing throughput over time (similar to
Figure 5.12) using gnuplot or similar graphing tools.

The read benchmark can optionally perform a number of random calculations
during the read loop to simulate CPU load which may affect I/O scheduling in
some environments. The user specifies a compute factor, which is the number of
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times the random calculation is repeated each iteration, to enable simulation of
various CPU and I/O loads.

Write benchmark

The write benchmark performs in much the same way as the read benchmark, ex-
cept it performs a sequential write. It will create a new file or optionally overwrite
an existing one (note that overwriting an existing file has very different perfor-
mance characteristics than writing a new file and this is not an action Hadoop
performs; this option is primarily provided for writing directly to block devices).
If an existing file is used, an offset to start writing at can be specified. It can
also write directly to a block device, but note that this is destructive to any file
system structures that were on the disk and should not be attempted while the
disk is mounted. The file will be opened using the O_WRONLY and O_CREAT flags
and optionally also O_DIRECT and/or O_SYNC.

The benchmark will generate a buffer with random data (the size of which can
be specified by the user) and this buffer is written repeatedly to the specified file
up to the specified maximum size. Optionally, the buffer can be filled with new
random data before every write.

As with the read benchmark, timestamps are collected at specified intervals to
allow the creation of a time-line of write throughput. CPU load simulation during
writing is also supported.

Read/write benchmark

The read/write benchmark reads from one file and writes the contents to another
file. A buffer’s worth of data is read from the input, and then immediately written
to the output. It is possible to specify a selectivity to write more or less data than
was read.

Reading and writing is otherwise done exactly like the read and write bench-
marks, including the creation of a throughput time-line and optional CPU load
simulation.

Segment read benchmark

The shuffle read benchmark reads from a specified set of files, but only reads up
to the specified size from each file before moving on to the next. Reading of each
file starts at either a specified or a random offset, and the list of input files can be
randomized. This simulates the I/O behavior of the shuffle phase.

The same options as with the read benchmark apply, and as with the other
benchmark a throughput time-line is recorded and CPU load can be simulated.
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6.6.2 Benchmark scripts

The micro-benchmark scripts utilize the I/O benchmark tool to perform the actual
benchmark operations described in Section 5.5.4.

All scripts use the following steps:

1. Creation of the necessary input files. If the benchmark does not need any
input files or they already exist, this step can be skipped.

2. Running the pre-benchmark script. This script can be customized by the
user to perform additional actions such as starting blktrace, sysstat or other
system monitoring tools, or any other steps the user wishes to perform be-
fore the benchmark is executed. The default version of this script does the
following:

(a) Clear the operating system page cache by running sync and echo 3

> /proc/sys/vm/drop caches. Note that this step requires superuser
privileges.

(b) Read a specified file as “warmup” using the benchmark tool. This has
the effect of removing any benchmark-related data from any hardware
caches that the previous step could not clear. It also ensures that the
I/O device is active and spinning, and that the executable code for
the I/O benchmark tool is loaded back into memory after the cache
was cleared so this does not cause additional I/O operations during the
benchmark.

3. Run the specified benchmark. Depending on the settings, multiple copies
of the benchmark tool will be started simultaneously to gather information
about multiple parallel readers/writers.

4. Wait for all benchmark invocations to finish.

5. Run the post-benchmark script. By default this script does nothing, but it
can be used to stop tools such as blktrace and gather the data they collected.

The individual benchmark scripts are further described below.

Device performance benchmarks

These benchmarks open the specified block device in O_DIRECT and read or write
it from begin to end (or optionally only partially). This allows the user to chart
how device performance changes depending on the offset from the device’s first
sector. Note that performing the write benchmark will destroy all data on the
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disk, including boot sectors and file system structures. Opening a block device di-
rectly requires superuser privileges. Optionally, a user-specified number of parallel
streams are used.

No input files need to be created for this benchmark. As warmup, the bench-
mark script reads from the specified device at an offset sufficiently different from
the start offset of the actual benchmark.

Sequential read file I/O

This benchmark will first create a number of input files. Because the goal is to
establish baseline performance, it is necessary to avoid fragmentation as much as
possible. Therefore, ensure that the volume is defragmented and has plenty of
contiguous free space available. Input files are created using the preallocate

system call for file systems that support it.
The benchmark itself will read the files back, using a user-specified number of

parallel streams and optionally using O_DIRECT.

Sequential write file I/O

This benchmark will write a number of files to the specified device, using a user-
specified number of parallel streams. Files will be written using O_SYNC, although
this can be disabled if desired (in that case, the benchmark itself will mainly
measure the speed at which the process can write data into the page cache, but
when combined with other tools it can still be useful to investigate write-back
behavior of a device).

Shuffle I/O

For input, this benchmark generates a very large (typically at least 256) number
of files. The same concerns for avoiding fragmentation as with the regular read
benchmark apply. It will then use the benchmark tool’s segment read option to
read these files back using varying segment sizes and optionally using multiple
parallel readers.

Fragmentation

This benchmark works the same as the sequential file read I/O benchmark, but the
input files are generated using a varying number of parallel streams to deliberate
cause fragmentation by interference. These files are then read back using only a
single reader to measure the effect this has on read performance. This is done
for different numbers of parallel streams so that the fragmentation factor can be
determined.
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Shuffle fragmentation

This functions the same way as the the regular shuffle I/O benchmark, only like
the fragmentation benchmark the input files are created using varying numbers of
parallel streams.

These files are then read back using varying segment sizes to allow the user to
determine the value of the threshold segment size for fragmentation in the shuffle
phase.

6.7 Experimental evaluation

The functionality of Mariom was evaluated by using it to analyze the workloads
described in Section 5.6.1 and predict their performance, using the hardware en-
vironment from Table 5.4 and the Hadoop configuration in Table 5.5.

In fact, all the graphs provided in Section 5.6.2 were created using the results
from Mariom, so the results shown in Chapter 5 are results for both the model
itself and Mariom.

The results demonstrate that Mariom is able to extract the necessary param-
eters from the workloads and can accurately predict their behavior under I/O
interference once the hardware model is established. Since the hardware model
was created using the Mariom micro-benchmark suite, this demonstrates their
utility in determining the I/O interference behavior of a hardware environment.

It is possible to utilize these results to make scheduling or provisioning deci-
sions. For example, the results for TeraSort in Figure 5.18 show that if you have
the choice between provisioning nodes with 4 or 8 cores (and otherwise the same
hardware specifications), there is little or no benefit to using the nodes with 8
cores. If the pricing of different node types versus the number of nodes is known,
this can be used to recommend what cluster configuration to use to reach a certain
performance goal. A scheduler can use this as well; if you can schedule more Tera-
Sort tasks on one node or schedule tasks from a more CPU intensive workload, the
latter would be better in terms of maximizing cluster throughput. By contrast, for
WordCount shown in Figure 5.20, nearly linear scale-up can be achieved by using
the nodes with more CPU cores.

Other information can be included for different trade-offs such as power con-
sumption; disabling half the CPU cores likely won’t halve your node’s power con-
sumption, while running fewer nodes is more effective in saving power. Information
provided by Mariom can help a tool decide how to balance power consumption and
performance in such a case.

A scheduler can also integrate the per phase predictions such as those shown
in Figure 5.25 for PageRank. That figure shows that PageRank reduce tasks are
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Figure 6.2: Model predictions for TeraSort using parameters obtained from a job
execution with interference

I/O bound primarily during their lengthy shuffle phase, and less so afterwards.
Scheduling another I/O intensive tasks on the same node as a PageRank reduce
task is therefore better if that task has already finished its shuffle phase.

Mariom’s design as a class library allows it to be integrated into a tool such
as the Starfish Elastisizer to improve the accuracy of their predictions in the case
that I/O interference occurs. For example, one of the functions of Starfish is to
recommend what instance type to use for a certain workload on Amazon EC2.
Most of the larger instance types have more than one CPU core, but Starfish is
not actually able to accurately predict how the workload behavior would change if
parallel tasks are used to exploit those CPU cores (it would always assume linear
scalability). By including Mariom in Starfish, it would be able to predict the
effects of I/O interference once a hardware model for those nodes has been created,
allowing it to make a more accurate trade-off between using larger instances or
number of nodes.

6.7.1 Measurement under interference

One of the primary advantages of Mariom is its ability to derive workload parame-
ters based on regular executions of the workload. Because Mariom uses CPU time
measurements rather than elapsed time, it can get accurate results even if there
was I/O interference during the execution of the workload. The results in Chap-
ter 5 were all obtained using parameters derived from job executed using only 1
slot, ensuring no interference occurred during the execution.

Figure 6.2 shows the predictions for TeraSort based on a job execution that
was using 4 slots, a situation that has considerable I/O interference extending the
duration of the tasks and, as seen in Figure 5.2, causes high levels of variability in
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Figure 6.3: Model predictions for WordCount using parameters obtained from a
job execution with interference

the execution times of the individual tasks.
Despite these conditions, the CPU parameters obtained are still very accurate.

For almost all cases the predictions in Figure 6.2 are within 1% of the original
predictions from Figure 5.18. The only exception is for the reduce tasks at 1 and
2 slots, where the prediction overestimates the CPU time by 6%. This is because
the CPU cost of the shuffle and merge phases does increase a little due to cache
and memory interference, and using these values for lower numbers of slots where
these phases are CPU bound causes a slight discrepancy. However, despite this
small error the performance trend of the application is still correctly estimated.

Figure 6.3 shows the results for WordCount under the same conditions. For
map tasks, shown in Figure 6.3a, the results are very close to the original predic-
tions from Figure 5.20a. CPU costs do increase slightly due to memory and cache
interference, so where the original prediction was accurate for low numbers of slot
but underestimated the execution time slightly for higher numbers of slots, the
situation is now reversed.

For reduce tasks, shown in Figure 6.3b, the prediction is accurate except for 1
slot. However, this is caused by the rounding of the task times for the shutdown
phase, which exaggerates what is actually a small difference in he prediction. Be-
cause the tasks are very short to begin with, the 3 second difference caused by
rounding appears very big although it actually is not. The difference between
the model prediction and linear scalability is also caused by this rounding dif-
ference, not by actual predicted I/O interference. Nevertheless, the trend of the
performance changes is still visible.

Being able to utilize measurements from regular job executions is an important
use case. It means that if Mariom is integrated in a production system, it can derive
model parameters from any workload execution without having to do special extra
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Figure 6.4: Model predictions for TeraSort using parameters obtained from a job
with smaller input data and fewer tasks

passes to measure the parameters under ideal conditions. If a new, unknown job is
executed in such a system it can simply run it normally, analyze the results, and
use the parameters from that analysis to optimize future executions of that job.

6.7.2 Data flow model evaluation

Mariom adds a data flow model to be able to utilize model parameters from one
execution of a workload for other executions using different data sizes or a different
configuration. Although the accuracy of the approach I used by itself has already
been evaluated in [HDB11], it is still necessary to determine whether the data flow
model yields adjusted parameters that can be used by the I/O interference model
for accurate predictions.

In order to evaluate the data flow model and its interactions with the I/O
interference model, I perform two experiments:

1. For the TeraSort and WordCount workloads, I predict the result of the full
workload by analyzing an execution using a much smaller data set and cor-
responding lower number of tasks.

2. For the TeraSort workload, I predict the effect of modifying the number of
reduce tasks in tandem with the number of slots.

For TeraSort, I utilize a very small workload with only 2GB of input data with
64 map tasks and 1 reduce task, compared to the 160GB with 640 map and 80
reduce tasks of the full workload.

Figure 6.4 shows the result of predicting the performance of the full workload
based on this subset. For the map tasks, shown in Figure 6.4a, the prediction is
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Figure 6.5: Model predictions for WordCount using parameters obtained from a
job with smaller input data and fewer tasks

around 5-10% higher than the original prediction in Figure 5.18a, with the biggest
difference at 1 slot at 15%. The reason for this difference is an overestimation of the
CPU costs of sorting because of the limitations mentioned in Section 6.5.1. Note
that the difference is somewhat exaggerated because the task times are rounded
based on the shutdown polling interval as explained in Section 5.5.3. For 1 slot, the
prediction changes from approximately 20 seconds per map task to 23 seconds per
map task, which is the smallest possible difference. In any case, the performance
trend is still correctly estimated.

For the reduce tasks in Figure 6.4b, the predictions are mostly within 1% of
the original prediction in Figure 5.18b. The higher accuracy is because the longer
tasks mean that the differences caused by rounding are relatively smaller, and the
fact that most phases are I/O bound at higher numbers of slots means that CPU
cost is not so important, and it is easier to accurately calculate the data sizes of
each phase than to adjust the CPU costs based on the changes. For 1 slot, the
execution time is underestimated by 4% because of an estimation error in the CPU
costs of the merge phase again due to the limitations mentioned in Section 6.5.1.

For WordCount, I used a small workload with 1GB input data, 8 map tasks
and 1 reduce tasks, compared to 50GB, 400 map tasks and 80 reduce tasks in the
full workload.

Figure 6.5 shows the results of using this subset for predicting the full workload.
For map tasks in Figure 6.5a there is basically no difference. Only at 4 slots or
higher does a small difference occur, which is again mostly caused by rounding.
It is a coincidence that this difference brings the prediction closer to the actual
execution time.

For the reduce tasks in Figure 6.5b, there is an apparently large difference
especially for fewer than 4 slots. This is caused by the fact that the input size of
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Figure 6.6: Model predictions for TeraSort adjusting the number of reduce tasks
based on the number of slots

the reduce tasks is smaller in the full workload than in the small workload, and
the data flow model assumes the output size will shrink accordingly based on the
selectivity calculation, but in fact it does not because the number of unique words
in the input is still the same. The difference this makes is again exaggerated by
rounding, which looks very big here because the reduce tasks are extremely short
to begin with (only 12 seconds).

Finally, I look at adjusting the number of reduce tasks based on the number
of slots for TeraSort. It may be considered desirable in some cases to always have
the reduce phase finish in a single wave, and this experiment tests if Mariom is
capable of predicting what happens in such a scenario. For each execution, the
number of reduce tasks is set to the number of slots per node multiplied by the
number of nodes. So on this cluster, for 1 slot there are 10 reduce tasks, for 2 slots
there are 20, etc.

Figure 6.6 shows the result of this prediction. There is no line for linear scal-
ability in Figure 6.6b because it is difficult to determine what linear scalability
means when the number of tasks is different for every data point.

For the map tasks in Figure 6.6a, the changed number of reducers alters the
costs of sorting slightly. However, this has no significant effect on the accuracy of
the predictions.

For the reduce tasks, the behavior shown in Figure 6.6b is very different because
of the changing number of tasks. Fewer tasks means that the amount of data
processed by each task is larger, which changes the behavior of the shuffle and
particularly the merge phases. This is responsible for the somewhat high execution
times for 2, 3 and 4 slots. The model is still able to predict each value to within
9% (using the value without fragmentation). Although some overestimation of
the execution time occurs at 1 and 2 slots because the data flow model does not
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entirely accurately calculate the costs of the merge phase, the model still predicts
the trend of the performance with high accuracy, including the fact that 5 slots
with 50 reduce tasks is the fastest configuration.

These results show that despite the limitations, the data flow model is capable
of predicting at least the trend in the performance changes when the input data size
or job configuration is altered. This allows Mariom to use parameters measured
from one job execution in different executions of the same job but with different
data or settings. It also enables sampling the workload to measure the parameters
rather than requiring the user to execute the full workload.

6.8 Conclusion

In this chapter, I have introduced Mariom, a framework and toolset based on the
I/O interference model presented in Chapter 5.

Mariom provides the user with three primary components:

• A workload analyzer that can extract workload parameters, including a mod-
ified version of Hadoop that measures all the required performance statistics.

• A performance predictor that uses the I/O interference model to predict the
behavior of a workload based on the parameters extracted by the analyzer.
It uses a data flow model that can adjust parameters based on changes in the
data and configuration, and a plug-in hardware model that can be customized
for a specific target environment.

• A suite of micro-benchmarks that can be used to derive the hardware pa-
rameters and interference functions for an environment.

Mariom is designed as a Java class library to allow it to be integrated into larger
toolsets such as provisioning tools or Hadoop schedulers. It enables such tools
to create more accurate predictions about the workload performance when I/O
interference occurs. Using this information, it is possible to improve provisioning
and scheduling decisions.

Due to the high accuracy in predicting performance trends of the model itself,
Mariom provides valuable information about workload performance under condi-
tions that previous tools such as the Starfish Elastisizer are not able to handle
accurately, or at all. Integrating Mariom into such a tool would allow it to greatly
improve its accuracy for these situations.

I have shown that Mariom is able to derive workload parameters even when
the workload was executed under less than ideal conditions where interference
occurred. This allows it to be utilized in a production system, using real executions
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of jobs to determine the parameters rather than requiring a separate pass. With
the addition of the data flow model, which I showed to accurately predict the
performance trends with changed job settings, these parameters can then be used
to predict the performance of future executions of that job even if they use different
data sizes or configurations than the original.

This makes Mariom a versatile tool that can be used to provide performance
predictions under many real world conditions, covering situations that the perfor-
mance models used by existing tools cannot handle.



Chapter 7

Conclusions and future work

7.1 Thesis summary

The theme of this thesis is effective resource utilization in the cloud. Cloud com-
puting offers very large scale resources, available for use to anyone on a pay-as-you-
go basis. The unprecedented scale of resources in the cloud makes it more difficult
than ever to ensure that all resources provisioned for a workload are utilized in an
efficient manner throughout the execution of the workload. Often it is found that
some resources are idle part of the time because the work is not distributed evenly
across resources, or because over-utilization of one resource hinders performance
and limits utilization of more abundant resources.

The scalability of cloud applications is directly relevant to this problem. The
payment model of the cloud means that a user can provision ten nodes for one
hour at exactly the same cost as provisioning one node for ten hours, so a linearly
scalable application would mean that a ten times improvement in execution time
is possible without any additional cost. Similarly, a user can provision nodes with
better hardware such as more CPU cores and memory in the hopes of improving
execution time.

Unfortunately, many factors can limit the scalability of a workload and there-
fore its ability to utilize the resources of both many nodes or faster nodes efficiently.
In this thesis, two of the problems that affect the resource utilization of cloud ap-
plications were investigated.

Chapter 2 introduces cloud computing and provides a high level overview to
how the problem of resource utilization is relevant to these environments. Chap-
ter 3 looks at data processing frameworks for the cloud, with a focus on MapReduce
which has become the de facto standard.

In Chapter 4, I consider the problem of workload balancing. When a workload
is imbalanced, it means that not all resources are doing the same amount of work,
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so some of the resources can be idle while others are still in use. The idle resources
are being wasted, and do not contribute to progressing the workload.

Data intensive applications are typically divided into workers, and workload
imbalance happens when workers running on different nodes have different ex-
ecution times. In this situation, some nodes finish running their workers while
workers on other nodes have not yet completed. If there are no more workers to
schedule in the workload at that time (either because there are no more workers
or because remaining workers are waiting on some condition that has not yet been
met), the nodes that have finished are idle and cannot help to alleviate the load
of the remaining resources being used.

This problem is often seen with map and reduce task workers in MapReduce.
Indeed, the issue of stragglers is a well-known problem in MapReduce. Stragglers
are small subset of tasks that are substantially longer than the other tasks in
the workload, causing the workload’s overall execution time to depend on them.
Reduce tasks are particularly sensitive to stragglers.

Three main causes are responsible for stragglers: data skew, which means some
workers process far more data than others; processing skew, which means some
records in the data take more time to process regardless of their size; and perfor-
mance heterogeneity, which means differences in task execution time are caused
by performance differences between the nodes. Such performance differences can
be caused by heterogeneous hardware, but also by environmental factors such as
background processes that may be active on some nodes or interference between
multiple virtual machines on the same node.

I proposed Dynamic Partition Assignment, a method to mitigate the effects of
stragglers in the reduce phase. Dynamic Partition Assignment works by dividing
the workload into many more partitions than there are tasks, and dynamically reas-
signing partitions when imbalance is detected. A large percentage of the partitions
is assigned to tasks up front, so they can be transferred in bulk at considerably
higher efficiency than doing a large number of small transfers. Imbalance is de-
tected by checking for workers that finish their assignmed partitions before the
others, at which point it can receive additional partitions to process either from
the set of partitions that had not yet been assigned to a task, or by reassigning a
partition from a task that is taking a long time to process its partition.

By using lazy imbalance detection depending only on execution time, Dynamic
Partition Assignment is agnostic of the cause of the imbalance and can therefore
handle data skew, processing skew and performance heterogeneity without any
prior knowledge of either the data or the hardware environment. This gives it
an advantage over other approaches that use either sampling or runtime statistics
gathering that can only really handle data skew.

Dynamic Partition assignment was implemented in Jumbo, a MapReduce-style
data processing system I created for experimentation with workload imbalance,
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and evaluated for both heavy data skew due to an inefficient partitioning function
and for a heterogeneous hardware environment. With data skew, Dynamic Par-
tition Assignment was able to improve the processing time of the affected stage
by 50%, almost entirely eliminating the variation between the tasks and therefore
eliminating any stragglers. The execution time was brought to within 10% of the
estimated optimally balanced time. It was also shown that Dynamic Partition
Assignment can offer improved load balancing granularity at lower overhead than
simply increasing the number of tasks, which was found to even reduce perfor-
mance in some cases particularly for Hadoop. For the heterogeneous environment
the benefit was smaller because the variation in task execution time was not as
large, but Dynamic Partition Assignment was still able to reduce task variance
and improve the execution time by 14%, bringing it to within 6% of the estimated
optimally balanced time.

In Chapter 5, I investigate another issue of resource utilization, namely the
problem of I/O interference. This problem occurs when multiple worker processes
need to access the same resource at the same time.

Many resources in the cloud are very abundant. Particularly CPU cores are
present in large numbers, as modern server nodes often utilize multi-core CPUs.
However, other resources such as disk storage are more constrained. This creates a
tension between wanting to increase parallelism to utilize the abundant resources
while being limited by the less plentiful resources.

Storage I/O resources are the largest problem in this situation. Storage devices
can range from regular single spinning platter hard disks to SSD drives or high-
performance storage arrays, but they are usually presented to the system as a
single resource that needs to be shared between processes. In addition, storage
devices are often the slowest component in a system, and can show complex non-
linear performance degradation when interference occurs. As a result, trying to
schedule a large number of processes to utilize many CPU cores does not only show
limited benefits due to the shared I/O resource, but can in fact reduce performance.
Although high-performance solid state devices mitigate some of the impact of this
problem, it is still going to occur to some degree every time multiple parallel
processes need to share a single resource.

When I/O interference is detected to occur it is often too late to address it.
Reassigning work to other machines often involves moving data to new locations,
which can increase the problem rather than alleviate it, at least in the short term.
The lazy detection utilized by Dynamic Partition Assignment is unsuited for this
problem as it only reassigns work after some nodes finish processing rather than
when the I/O interference occurs, so some resources may not be efficiently utilized
until other resources become available to move work to (which may not happen
at all if there is no imbalance). Therefore, a different solution is necessary for
I/O interference, one that can predict the problems before they occur so that
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provisioning and scheduling decisions can be altered accordingly.
I proposed a cost model for MapReduce that is able to predict the effect of I/O

interference when multiple processes running on a node are contending for that
node’s disk I/O resources. The model uses hardware specific interference functions
that are derived from micro-benchmarks used to observe the behavior of the I/O
devices under contention, and combines this with an analytical model of MapRe-
duce’s behavior to predict the performance of a workload under interference.

The I/O interference model was evaluated using several representative MapRe-
duce workloads on a real cluster environment. The experiment was comprised of
a mix of workloads that are heavily I/O intensive, CPU intensive, or exhibit both
CPU and I/O intensive behavior. I found that the model is able to predict the
actual performance of all the workloads to within 10%, and provides detailed in-
formation about which parts of the workload are CPU or I/O intensive, and by
how much.

Based on the I/O interference model I developed Mariom, a framework and
toolset for applying the interference model to applications, described in Chapter 6.
Mariom provides a micro-benchmark suite that allows users to determine hardware
parameters and interference functions for their environment, a workload analyzer
that allows the collection of workload parameters by executing the workload or a
subset thereof, and a performance predictor that uses this information to predict
the behavior of an application when I/O interference occurs. In addition, Mariom
integrates a data flow model that allows it to adjust workload parameters if the
input data or configuration of the job changes.

Because Mariom takes measurements to derive the parameters based on CPU
time rather than elapsed time as used by previous tools it is able to derive workload
parameters from regular job executions without any restrictions on the configura-
tion used, and with very little impact on accuracy even if there was interference
during the measurement. This, combined with the data flow model that allows
measurements based on a sample of the workload rather than the entire work-
load, means that it is very easy to employ Mariom in a production environment to
collect parameters about real jobs and predict their performance under different
conditions.

Mariom is designed as a Java class library, allowing it to be integrated into
full-blown provisioning and scheduling systems, providing them with increased
accuracy in reasoning about situations where I/O interference can be a factor.
This allows such tools to improve their provisioning and scheduling decisions, which
leads to improved resource utilization and ultimately faster execution times and
lower costs. Ultimately, Mariom could also be integrated into Hadoop itself, using
it to introduce I/O-awareness to the YARN resource scheduler used in future
versions of Hadoop.

Dynamic Partition Assignment and the I/O interference model with its asso-
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ciated toolset address different parts of the efficient resource utilization puzzle,
and both have shown to have real benefits to improving resource utilization for
MapReduce. Dynamic Partition Assignment and the I/O interference model were
both proposed in the context of MapReduce, but are not specific to MapReduce
and can be extended to other data intensive applications.

7.2 Future work

There are a number of research opportunities presented by the work in this paper,
for both workload balancing and the topic of I/O interference.

For runtime workload balancing, the primary opportunity is expanding Dy-
namic Partition Assignment to work in tandem with approaches used in other
works which are orthogonal to mine:

• Dynamic Partition Assignment could be extended to handle map tasks in an
approach similar to [KBHR12].

• Large keys could be handled by allowing them to be chopped similar to
the approach in [RSU12], though this would either introduce a requirement
for sampling or requires a method to split a partition after the fact (al-
though [KBHR12] is able to split partitions, it does so by reprocessing the
entire partition for repartitioning, which is not desirable).

• Dynamic Partition Assignment could also be applied to approaches like Sail-
fish [RRS+12], taking advantage of their more efficient shuffle architecture
for improved performance. Because Sailfish indexes the intermediate data, it
is possible to reassign work without dividing it into a large number of parti-
tions; instead, another worker could be assigned part of the range of another
task, using the index to transfer only the necessary data. In addition, be-
cause data is not shuffled by the reduce workers but read directly from the
I-files stored on the DFS, this approach would eliminate the duplicate data
transfers that Dynamic Partition Assignment in its current form is some-
times subject to. Clearly, combining these two approaches is a very natural
thing to do and could lead to a very effective, all-purpose skew mitigation
system that is able to handle all causes of imbalance rather than just data
skew as is currently the case in Sailfish.

For the I/O interference model, there are still many avenues for future research:

• Mixed workloads: The model can be extended to handle heterogeneous
workloads, predicting the effect of running different types of tasks simulta-
neously. This would make the model more suitable for determining the most
efficient way to mix workloads of different CPU and I/O intensity.
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• Extended tool support: The I/O interference framework, Mariom, can be
integrated into existing provisioning or scheduling system to allow them to
make more accurate decisions and weigh the benefits of more nodes vs. more
powerful nodes that could run more tasks in parallel, or how to distribute
tasks across already provisioned nodes. Alternatively, Mariom itself could
be further developed into such a system.

• Resources shared between nodes: although the current model focuses
on I/O resources shared between tasks running on the same node, there are
other types of shared resources. The network is shared between nodes, where
activity of certain nodes can affect the performance of other nodes that need
to communicate, for example when a central switch limits the performance.
Additionally, storage systems such as Amazon S3 are external to the nodes
and therefore also shared. Finally, resources may be shared between virtual
machines if they are running on the same physical host.

• Remote resources: the model currently makes some simplifying assump-
tions about how I/O operations performed on nodes other than the one that
is running the task affect performance. More explicit handling of map tasks
that are not data-local or shuffle I/O operations can help to improve predic-
tions, particularly for a scheduler that needs to know the immediate impact
of scheduling a certain task on a certain node.

• Fragmentation: Section 5.6.3 showed that when intermediate file fragmen-
tation occurs it has a very large impact on the performance of the application,
but it is still difficult to predict when this problem occurs. It is possible to
handle this situation by gathering more information about various workload
types and environmental conditions, and use this to build a statistical model
that can more accurately predict when fragmentation will affect a workload.

• Determining interference functions: using micro-benchmarks to deter-
mine the hardware specific interference functions is currently a mostly man-
ual process that requires some expertise in this area to perform. Refining
the selection of benchmarks and using an automated system to derive the
models is a very large and interesting research problem that has still not
been adequately solved.

Both the workload balancing and I/O interference approaches proposed in this
thesis can also be adjusted for and applied to other data intensive application
platforms besides MapReduce.
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